EXTREMELY AMENABLE ALGEBRAS

ANTHONY TO-MING LAU

Let S be a semigroup and m(S) the space of bounded real functions on S. A subalgebra of m(S) is extremely left amenable (ELA) if it is (sup) norm closed, left translation invariant, containing constants and has a multiplicative left invariant mean. S is ELA if m(S) is ELA. In this paper, we give a method in constructing all ELA subalgebras of m(S); it turns out that any such subalgebra of m(S) is contained in an ELA subalgebra which is the uniform limit of certain classes of simple functions on S.

A subset $E \subseteq S$ is left thick if for any finite subset $\sigma \subseteq S$, there exists $s \in S$ such that $\{as; \ a \in \sigma\} \subseteq E$. In §3, we strengthen a result of T. Mitchell and prove that a semigroup S is ELA if and only if for any subset $E \subseteq S$, either E is left thick or S - E is left thick. We also show how this result may be generalized to certain subalgebras of m(S).

ELA semigroups and subalgebras have been considered by Mitchell in [9] and [10], and Granirer in [5], [6] and [7]. ELA semigroups S are shown to be characterized by the fixed point property on compact hausdorff spaces by Mitchell [9] and by the algebraic property: "for any a, b in S, there is a c in S such that ac = bc = c" by Granirer [5]. ELA subalgebras are characterized by Mitchell [10] by a fixed point property on compacta (under certain kinds of actions of S on a compact hausdorff space).

1. Some notations and preliminaries. Let S be a semigroup. For each $a \in S$, $f \in m(S)$, denote by the sup norm of f, $||f|| = \sup_{s \in S} |f(s)|$ (and it is only this norm that will be used throughout this paper), $_af(s) = f(as)$ and $p_a(f) = f(a)$ for all $s \in S$. Then p_a is called the *point measure* on m(S) at a and any element in $Co\{p_a; a \in S\}$ is called a *finite mean* on m(S) (where Co(A) denotes the convex hull of a subset A in a linear space).

If A is a norm closed left translation invariant subalgebra of m(S) (i.e., ${}_{a}f \in A$ whenever $f \in A$ and $a \in S$) containing 1, the constant one function on S, and $\varphi \in A^*$, then φ is a mean if $\varphi(f) \geq 0$ for $f \geq 0$, and $\varphi(1) = 1$; φ is multiplicative if $\varphi(fg) = \varphi(f)\varphi(g)$ for all $f, g \in A$; φ is left invariant if $\varphi(f) = \varphi(f)$ for all $f \in A$; and $f \in A$;