ON EMBEDDINGS OF 1-DIMENSIONAL COMPACTA IN A HYPERPLANE IN E^4

J. L. BRYANT AND D. W. SUMNERS

In this note a proof of the following theorem is given.

THEOREM 1. Suppose that X is a 1-dimensional compactum in a 3-dimensional hyperplane E^3 in euclidean 4-space E^4 , that $\varepsilon > 0$, and that $f: X \to E^3$ is an embedding such that $d(x, f(x)) < \varepsilon$ for each $x \in X$. Then there exists an ε -push h of (E^4, X) such that h|X = f.

The proof of Theorem 1 is based on a technique exploited by the first author in [3]. This method requires that one be able to push X off of the 2-skeleton of an arbitrary triangulation of E^4 using a small push of E^4 . This could be done very easily if it were possible to push X off of the 1-skeleton of a given triangulation of E^3 via a small push of E^3 . Unfortunately, this cannot be accomplished unless X has some additional property (such as local contractibility) as demonstrated by the examples of Bothe [2] and McMillan and Row [9]. However, we are able to overcome this difficulty by using a property of twisted spun knots obtained by Zeeman [10].

In the following theorem let B^4 denote the unit ball in E^4 , B^3 the intersection of B^4 with the 3-plane $x_4 = 0$, and D^2 the intersection of B^4 with the 2-plane $x_1 = x_2 = 0$.

THEOREM 2. Let X be a 1-dimensional compactum in B^3 such that $X \cap \text{Bd } D^2 = \emptyset$. Then there exists an isotopy $h_i: B^4 \to B^4$ $(t \in [0, 1])$ such that

(i) $h_0 = identity$,

- (ii) $h_t | \operatorname{Bd} B^4 = identity \text{ for each } t \in [0, 1], and$
- (iii) $h_{\scriptscriptstyle 1}(X)\cap D^{\scriptscriptstyle 2}= arnothing$.

Proof. Let $I = D^2 \cap B^3$. Since X does not separate B^3 , there exists a polygonal arc J in $B^3 - X$ joining one endpoint of I to the other. We may assume, by applying an appropriate isotopy of B^4 , that J_+ , the intersection of J with the half-space $x_3 \ge 0$ is contained in I. Let F be a 3-cell in B^3 such that $F \cap J = J_+$ and $F \cap X = \emptyset$, and let J_- be the intersection of J with the half-space $x_3 \le 0$. Now spin the arc J_- about the plane $x_3 = x_4 = 0$, twisting once, so that at time $t = \pi, J_-$ lies in F. (See Zeeman [10] for the details of this construction.) Observe that the boundary of the 2-cell C traced out by J_- is the same as Bd D^2 .