WILD POINTS OF CELLULAR ARCS IN 2-COMPLEXES IN E^{3} AND CELLULAR HULLS

GAIL H. ATNEOSEN

Loveland has established that if W is the set of wild points of a cellular arc that lies on a 2-sphere in E^3 , then either W is empty, W is degenerate, or W contains an arc. This note considers 2-complexes rather than 2-spheres. Making strong use of Loveland's results and others, it is proved that a cellular arc in a 2-complex in E^3 either contains an arc of wild points or has at most one wild point that has a neighborhood in the 2-complex homeomorphic to an open 2-cell. In the case of noncellular arcs in E^3 , one can investigate "minimal cellular sets" containing the arc. A cellular hull of a subset A of E^3 is a cellular set containing A such that no proper cellular set also contains A. A characterization is given of those arcs in E^3 that have cellular hulls that lie in tame 2-complexes in E^3 .

A 2-complex in E^3 is the homeomorphic image of a 2-dimensional finite Euclidean polyhedron. A subset X of E^3 is said to be *locally* tame at a point p of X if there is a neighborhood N of p in E^3 and a homeomorphism h of Cl(N) (Cl = closure) onto a polyhedron in E^3 such that $h(Cl(N \cap X))$ is a finite Euclidean polyhedron. A point p of a subset X of E^3 is said to be a wild point of X if X is not locally tame at p. A subset G of E^3 is said to be cellular (in E^3) if there exists a sequence Q_1, Q_2, \cdots of 3-cells in E^3 such that for each positive integer $i, Q_{i+1} \subset$ Interior Q_i and $G = \bigcap_{i=1}^{\infty} Q_i$. If A and B are two arcs in E^3 , then A is said to be equivalent to B if there is a homeomorphism h mapping E^3 onto E^3 such that h(A) = B.

THEOREM 1. Let A be a cellular arc in a 2-complex in E^3 . If the set of wild points of A does not contain an arc, then A has at most one wild point that has a neighborhood in the 2-complex homeomorphic to an open 2-cell.

Proof. Assume that A has two wild points p and q that have neighborhoods in the 2-complex homeomorphic to an open 2-cell and contradict the hypothesis that A is cellular. Then p lies on a subarc of A that is contained in the interior of a closed 2-cell. The argument of Theorem 5 of [3] then establishes that p lies on a subarc C of A that is contained in a 2-sphere in E^3 . Since C is a cellular arc by [6], it follows from [5] that p is the only wild point of C. Thus p and q are isolated wild points of A.