FRATTINI SUBALGEBRAS OF A CLASS OF SOLVABLE LIE ALGEBRAS

ERNEST L. STITZINGER

In this paper the Lie algebra analogues to groups with property E of Bechtell are investigated. Let \mathfrak{X} be the class of solvable Lie algebras with the following property: if H is a subalgebra of L, then $\phi(H) \subseteq \phi(L)$ where $\phi(L)$ denotes the Frattini subalgebra of L; that is, $\phi(L)$ is the intersection of all maximal subalgebras of L. Groups with the analogous property are called E-groups by Bechtell. The class \mathfrak{X} is shown to contain all solvable Lie algebras whose derived algebra is nilpotent. Necessary conditions are found such that an ideal N of $L \in \mathfrak{X}$ be the Frattini subalgebra of L. Only solvable Lie algebras of finite dimension are considered here.

The following notation will be used. We let N(L) be the nil radical of L and S(L) be the socle of L; that is, S(L) is the union of all minimal ideals of L. If A and B are subalgebras of L, let $Z_B(A)$ be the centralizer of A in B. The center of A will be denoted by Z(A). If $[B, A] \subseteq A$, we let $\operatorname{Ad}_A(B) = \{ \operatorname{ad} b \text{ restricted to } A; \text{ for$ $all } b \in B \}$. L' will be the derived algebra of L and L'' = (L')'.

PROPOSITION 1. Let L be a Lie algebra such that L' is nilpotent. Then the following are equivalent:

(1) $\phi(L) = 0.$

(2) N(L) = S(L) and N(L) is complemented by a subalgebra.

(3) L' is abelian, is a semi-simple L-module and is complemented by a subalgebra.

Under these conditions, Cartan subalgebras of L are exactly those subalgebras complementary to L'.

Proof. Assume (1) holds. Nilpotency of L' implies $\phi(L) \supseteq L''$, so L' is abelian and may be regarded as an L/L'-module. We may assume $L' = \sum \bigoplus V_{\rho}$, V_{ρ} indecomposable L/L'-submodules. If M is a maximal subalgebra of L and if $V_{\rho} \not\subseteq M$, then $M \cap V_{\rho}$ is an ideal of L. If S is an L/L'-submodule of V_{ρ} properly contained between $M \cap V_{\rho}$ and V_{ρ} , then M + S is a subalgebra of L properly contained between M and L, contradicting the maximality of M. Therefore M contains all maximal submodules of V_{ρ} for each ρ . Then $\phi(L) = 0$ implies the intersection of all maximal submodules of V_{ρ} is zero for each ρ . If V_1, \dots, V_s are maximal submodules of V_{ρ} with $V_1 \cap \dots \cap V_s = 0$ and are minimal with respect to this property, we have $V = V_2 \cap \dots V_s \neq 0$