A NOTE ON HANF NUMBERS

SAHARON SHELAH

We show that for every $\xi < (2^{\kappa})^+$, there is a theory T and set of types P in a language of power κ , such that there is a model of T which omits every $p \in P$ of power λ if and only if $\lambda \leq \Box_{\xi}$. We also disprove a conjecture of Morley on the existence of algebraic elements.

The results which are proved here appear in [5].

1. On η_{κ} .

DEFINITION 1.1. η_{κ} will be the first cardinal such that for every language $L, |L| \leq \kappa$, and set of types $\{p: p \in P\}$ (in L) if T has a model of power $\geq \eta_{\kappa}$ which omits all the types in P, then T has such models in every power $\geq |T|$. (A type is a set of formulas with the variables x_0, \dots, x_n only for some $n < \omega$. A model omits p if there does not exist a_0, \dots, a_n in the model such that $\varphi(x_0, \dots, x_n) \in p$ implies $M \models \varphi[a_0, \dots, a_n]$.)

Chang showed in [2], by methods of Morley from [4] that $\eta_{\kappa} \leq \Box[(2^{|T|})^+]$. He also in [1] asked what is η_{κ} . We shall show that $\eta_{\kappa} = \Box[(2^{\kappa})^+]$. For this it is sufficient to prove that for every $\xi < (2^{\kappa})^+$ there exists a theory T and a set of types P (in a language L = L(T) of power $\leq \kappa$) such that T has a model of power λ which omits all the types in P if and only if $\lambda \leq \Box_{\xi}$.

The following theorem appears in many articles which deals with finding lower bounds for Hanf numbers.

THEOREM 1.1. If there exists a theory $T, |L(T)| \leq \kappa$, and a set of types P in L(T), such that every model of T which omits every $p \in P$ is well ordered in an order type $\leq \xi$, and it has such a model whose order type is ξ , then $\eta_{\kappa} > \beth_{\xi}$.

Proof. We adjoin to L the predicates $Q_1(x)$, Q(x), $x \in y$, the constants c_n , $n < \omega$ and the function F(x), and we get a language L_1 , $|L_1| \leq \kappa$. We define $T_1 = \{\psi^q: \psi \in T\} \ [\psi^q \text{ is } \psi \text{ relativized to } Q$, that is instead of $(\exists x)\varphi$ we write $(\exists x)(Q(x) \land \varphi)$ and instead of $(\forall x)\varphi$ we write $(\forall x)[(Q(x) \rightarrow \varphi)]$. We also define $P_1 = \{p^q: p \in P\} \cup \{q\}, p^q = \{\varphi^q: \varphi \in p\}, q = \{Q_1(x)\} \cup \{x \neq c_n: n < \omega\}.$

We add to T_1 an axiom of extensionality

$$\varphi_1 = (\forall xy)[(\forall z)[z \in x \leftrightarrow z \in y] \to x = y]$$