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PROJECTING ONTO CYCLES IN SMOOTH,
REFLEXIVE BANACH SPACES

H. B. COHEN AND F. E. SULLIVAN

This paper deals with operator algebras generated by
certain classes of norm 1 projections on smooth, reflexive
Banach spaces. For a strictly increasing continuous function
JF* on the nonnegative reals, the set of " ^-^-projections "
gives rise to operator algebras equal to their second commu-
tants. The principal result is that the closed subspace gener-
ated by the set of elements Ex, where x is fixed and E runs
through a Boolean algebra of ^^-projections, is the range of
a norm 1 projection that commutes with each projection in
the Boolean algebra. Sufficient conditions using Clarkson type
norm inequalities are given for the commutativity of the set
of all ^^-projections. Examples in Orlicz spaces are given.

1* Projections in smooth spaces* A normer of a nonzero element

x in a Banach space X is a functional x* in the dual X* such that

||α?*|| = 1 and | |g| | — x*(x). A normer for x always exists; we say

that X is smooth if every nonzero x has but one normer, denoted N(x).

We make the definition N(0) = 0.

Proof of the following three lemmas is left to the reader; see,

for instance, [5; p. 447],

LEMMA 1. In a smooth space X, the norming map N:X—*S*{J {0}

has the following properties, where £* is the unit sphere of X*.

( 1 ) N(x) is the only element of S* such that N(x)(x) — \\x\\ if

xΦO.

( 2 ) N(Xx) — (I X \/X)N(x) for all scalars X Φ 0; in particular,

N(Xx) = N(x) for X > 0.

( 3 ) In the real case, N(x)(y) = lim (λ -+ 0)(\\x + \y\\- \\x\\)/X for

.x,yeX and x Φ 0.

L E M M A 2. If X is a smooth complex Banach space. Re X is also

smooth; indeed, for each x Φ 0, Re N(x) is the normer of x in (Re X ) * .

A vector x is said to be James-orthogonal to y iί \\x + Xy\\ ^ \\x\\

for all real numbers λ.

LEMMA 3 If X is a smooth space, then N(x){y) = 0 if and only

if x is James-orthogonal to y in the real case and James-orthogonal

to both y and iy in the complex case. If Y is a subspace, then

N(x)(y) = 0(ye Y) if and only if \\x + y\\ ^ \\x\\(ye Y).
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