PROJECTING ONTO CYCLES IN SMOOTH, REFLEXIVE BANACH SPACES

H. B. COHEN AND F. E. SULLIVAN

This paper deals with operator algebras generated by certain classes of norm 1 projections on smooth, reflexive Banach spaces. For a strictly increasing continuous function \mathscr{F} on the nonnegative reals, the set of " \mathscr{F} -projections" gives rise to operator algebras equal to their second commutants. The principal result is that the closed subspace generated by the set of elements Ex, where x is fixed and E runs through a Boolean algebra of \mathscr{F} -projections, is the range of a norm 1 projection that commutes with each projection in the Boolean algebra. Sufficient conditions using Clarkson type norm inequalities are given for the commutativity of the set of all \mathscr{F} -projections. Examples in Orlicz spaces are given.

1. Projections in smooth spaces. A normer of a nonzero element x in a Banach space X is a functional x^* in the dual X^* such that $||x^*|| = 1$ and $||x|| = x^*(x)$. A normer for x always exists; we say that X is smooth if every nonzero x has but one normer, denoted N(x). We make the definition N(0) = 0.

Proof of the following three lemmas is left to the reader; see, for instance, [5; p. 447].

LEMMA 1. In a smooth space X, the norming map $N: X \to S^* \cup \{0\}$ has the following properties, where S^* is the unit sphere of X^* .

(1) N(x) is the only element of S^* such that N(x)(x) = ||x|| if $x \neq 0$.

(2) $N(\lambda x) = (|\lambda|/\lambda)N(x)$ for all scalars $\lambda \neq 0$; in particular, $N(\lambda x) = N(x)$ for $\lambda > 0$.

(3) In the real case, $N(x)(y) = \lim (\lambda \to 0)(||x + \lambda y|| - ||x||)/\lambda$ for $x, y \in X$ and $x \neq 0$.

LEMMA 2. If X is a smooth complex Banach space, Re X is also smooth; indeed, for each $x \neq 0$, Re N(x) is the normer of x in (Re X)^{*}.

A vector x is said to be James-orthogonal to y if $||x + \lambda y|| \ge ||x||$ for all real numbers λ .

LEMMA 3. If X is a smooth space, then N(x)(y) = 0 if and only if x is James-orthogonal to y in the real case and James-orthogonal to both y and iy in the complex case. If Y is a subspace, then $N(x)(y) = 0(y \in Y)$ if and only if $||x + y|| \ge ||x|| (y \in Y)$.