ASCOLΓS THEOREM FOR SPACES OF MULTIFUNCTION

Y.-F. LIN and DAVID A. ROSE

The purpose of this paper is to prove that if *X* **and** *Y* **are two arbitrary topological spaces and if** *M(X, Y; c)* **denotes the space of all multi-valued functions on X to** *Y* **with the compact-open topology, then a closed set** $\mathscr{F} \subset M(X, Y; c)$ is **compact if at each point** $x \in X$, $\mathscr{F}(x) = \cup \{F(x) | F \in \mathscr{F}\}\$ has a compact closure in *Y*, and $\mathscr F$ is evenly continuous.

The classical theorem of Ascoli [1] asserts that a uniformly bounded, equicontinuous family of functions has a compact closure in the space of continuous functions with the topology of uniform con vergence. This theorem has been the center of many papers, notably the works of Gale [2], Myers [5], Weston [6], and Morse-Kelley [3, pp. 233-237], The purpose of this paper is to establish a similar version of the Ascoli theorem in the space of multi-valued functions.

Let X and Y be two nonvoid topological spaces. Then $F \subset X \times Y$ is said to be a *multifunction* on X to Y, denoted by $F: X \to Y$, if and only if for each $x \in X$,

1.1.
$$
\pi_{2}((\{x\}\times Y)\cap F)\neq \Box,
$$

where π_2 is the second projection of $X \times Y$ onto Y, and \square denotes the empty set. We shall write $F(x)$ for the set defined in 1.1. Thus, loosely speaking, a multifunction is a point-to-set correspondence. If A and B are subsets of X and Y respectively, then we denote $F(A) = \bigcup \{F(x) \mid x \in A\}$ and $F^{-1}(B) = \{x \in X \mid F(x) \cap B \neq \Box\}.$

DEFINITION 1.2. A multifunction $F: X \rightarrow Y$ is *continuous* if and only if for each open set V in Y, the set $F^{-1}(V)$ is open and the set $F^{-1}(Y - V)$ is closed in X.

Let Y^x be the set of all (single-valued) functions on X to Y , and let $M(X, Y)$ be the set of all multifunctions on X to Y. Note that Y^X is a subset of $M(X, Y)$. For our later convenience in expressions, let us agree that for any $A \subset X$ and $B \subset Y$:

$$
(A, B) = {F \in M(X, Y) | F(A) \subset B},
$$

 $)A, B(= {F \in M(X, Y) | A \subset F^{-1}(B)}.$

Recall that the compact-open topology $[3, p. 221]$ for Y^x has as a subbase the totality of sets $(K, U) \cap Y^X$ where K is a compact subset