A CHARACTERIZATION OF THE NIL RADICAL OF A RING

WILLIAM J. WICKLESS

Let *R* be a ring and *S* a subring of *R*. Let φ be a ring homomorphism mapping *S* onto a division ring *Γ*. Choose an ideal $P \subseteq R$ maximal with respect to the property $(P \cap S)^{\phi} =$ (0). P is a prime ideal of R . If P is any prime ideal of R which can be obtained in the above manner write $P =$ $P(\Gamma, S, \varphi)$.

It is shown that all primitive ideals are of *the* form $P = P(T, S, \varphi)$ and that a ring *R* is nil if and only if it has no prime ideals of the form $P = P(T, S, \varphi)$. It is shown that the nil radical of any ring is the intersection of ail prime ideals $P = P(\Gamma, S, \varphi)$.

It is shown that if $P = P(\Gamma, S, \varphi)$ for all prime ideals $P \subseteq R$ then the nil and Baer radicals coincide for all homomorphic images of *R.* If the nil and Baer radicals coincide for all homomorphic images of *R,* it is shown that any prime ideal *P* of *R* is contained in a prime ideal $P' = P'(T, S, \varphi)$.

Finally, by consideration of prime ideals $P = P(T, S, \varphi)$, two theorems are proved giving information about rings satisfying very special conditions.

2. Certain prime ideals in rings. Let R be any ring and S a subring of R. Suppose φ is a ring homomorphism mapping S onto a division ring *Γ*. We may choose an ideal $P \subseteq R$ maximal with respect to the property $(P \cap S)^{\circ} = (0)$. It is an easy exercise to check that *P* will be a prime ideal of *R.* If *P* is any prime ideal of *R* which is a maximal ideal such that $(P \cap S)^{\circ} = (0)$ for some subring $S \subseteq R$ and some ring homomorphism $\varphi: S \to \Gamma, \Gamma$ a division ring, we write $P = P(T, S, \varphi)$. Throughout, for any ring R, we let *J(R), N(R), β(R)* denote respectively the Jacobson, nil, and Baer radicals of *R.* We start with the following simple fact.

THEOREM 1. *Let R be a ring and P a primitive ideal of R. Then* $P = P(\Gamma, S, \varphi)$.

Proof. Let $P = (0: M)$ for some simple right R module M. Let be the centralizer of *M. Γ* is a division ring. As *RIP* is primi tive it is well known ([3], Th. 3, p. 33) that there exists a subring $S' \subseteq R/P$ and a homomorphism $\varphi' : S' \to \Gamma$. It is easy to check $P = P(\Gamma, S, \varphi)$ with $S = (S')\pi^{-1}, \varphi = \pi \varphi', \pi$ the natural map from *R* onto *RIP.*