ON THE NUMBER OF FINITELY GENERATED 0-GROUPS

DOUGLAS B. SMITH

Let K be a class of relational systems of a fixed similarity type, n an infinite cardinal. A system \mathfrak{A} of cardinality n is (\mathfrak{n}, K) -weakly universal if each system in K of cardinality at most n is isomorphically embeddable in A. The object of this note is to construct 2^{\aleph_0} nonisomorphic finitely generated 0-groups and hence answer in the negative the following problem attributed to B. H. Neumann. Is there a group which is (\aleph_0, K_1) -weakly universal, where K_1 is the class of 0-groups ?

If \mathfrak{A} is (\mathfrak{n}, K) -weakly universal and also a member of K, then \mathfrak{A} is (\mathfrak{n}, K) -universal. It is known that (\mathfrak{n}, K) -universal systems exist for many classes K and cardinals \mathfrak{n} . In particular, Morley and Vaught established a useful condition for the existence of (\mathfrak{n}, K) -universal systems for K an elementary class, \mathfrak{n} an appropriate cardinal (see [7]). However there are no theorems of wide applicability concerning the existence of (\mathfrak{N}_0, K) -universal systems; here the structure of the systems in K must be carefully analyzed. To illustrate this, consider the classes K_1 of 0-groups; K_2 of abelian 0-groups (i.e., torsion free abelian groups); K_3 of ordered groups (i.e., groups of type $\langle H, \cdot, \leq \rangle$ where $\langle H, \cdot \rangle$ is an 0-group linearly ordered by \leq); K_4 of abelian ordered groups. By applying the results in [7], (assuming the generalized continuum hypothesis), it is easily seen that there exists an (\mathfrak{n}, K_i) -universal system for all $\mathfrak{n} > \mathfrak{N}_0$ and i = 1, 2, 3, or 4.

The situation for $n = \aleph_0$ is more complicated. There is an (\aleph_0, K_2) -universal group (see [1, p. 64]). However, there is no ordered group which is (\aleph_0, K_4) -weakly universal and hence there is no (\aleph_0, K_3) -universal group. This follows readily from the fact that the free abelian group on two generators has 2^{\aleph_0} nonisomorphic orders (see [2, p. 50]). Theorem 2, which establishes the nonexistence of a group which is (\aleph_0, K_4) -weakly universal, solves a problem of B. H. Neumann (see [2, p. 211, Problem 17]).

1. Definitions. An 0-group is a group G for which there exists a linear ordering relation \leq on G satisfying the following condition:

 $a \leq b$ implies $c a d \leq c b d$ for all $a, b, c, d \in G$. For a group G the commutator of x and y in G is denoted $[x, y] = x^{-1} y^{-1} xy$; for subsets A and B of G, [A, B] is the subgroup of G generated by $\{[a, b] : a \in A, b \in B\}$; G' = [G, G]; G'' = [G', G']. Let F be the free