ON THE NUMBER OF FINITELY GENERATED 0 -GROUPS

Douglas B. Smith

Abstract

Let K be a class of relational systems of a fixed similarity type, \mathfrak{n} an infinite cardinal. A system \mathfrak{H} of cardinality \mathfrak{n} is (\mathfrak{n}, K)-weakly universal if each system in K of cardinality at most \mathfrak{n} is isomorphically embeddable in A. The object of this note is to construct $2^{\aleph_{0}}$ nonisomorphic finitely generated 0 -groups and hence answer in the negative the following problem attributed to B. H. Neumann. Is there a group which is $\left(\boldsymbol{K}_{0}, K_{1}\right)$-weakly universal, where K_{1} is the class of o-groups?

If \mathfrak{N} is (\mathfrak{n}, K)-weakly universal and also a member of K, then \mathfrak{H} is (\mathfrak{n}, K)-universal. It is known that (\mathfrak{n}, K)-universal systems exist for many classes K and cardinals \mathfrak{n}. In particular, Morley and Vaught established a useful condition for the existence of (n, K)universal systems for K an elementary class, \mathfrak{n} an appropriate cardinal (see [7]). However there are no theorems of wide applicability concerning the existence of $\left(\boldsymbol{K}_{0}, K\right)$-universal systems; here the structure of the systems in K must be carefully analyzed. To illustrate this, consider the classes K_{1} of 0 -groups; K_{2} of abelian 0 -groups (i.e., torsion free abelian groups) ; K_{3} of ordered groups (i.e., groups of type $\langle H, \cdot, \leqq\rangle$ where $\langle H, \cdot\rangle$ is an 0 -group linearly ordered by \leqq); K_{4} of abelian ordered groups. By applying the results in [7], (assuming the generalized continuum hypothesis), it is easily seen that there exists an (\mathfrak{n}, K_{i})-universal system for all $\mathfrak{n}>\boldsymbol{K}_{0}$ and $i=1,2,3$, or 4.

The situation for $\mathfrak{n}=\mathcal{S}_{0}$ is more complicated. There is an (\mathcal{N}_{0}, K_{2})-universal group (see [1, p. 64]). However, there is no ordered group which is $\left(\boldsymbol{N}_{0}, K_{4}\right)$-weakly universal and hence there is no (\boldsymbol{N}_{0}, K_{3}-universal group. This follows readily from the fact that the free abelian group on two generators has $2^{\aleph_{0}}$ nonisomorphic orders (see [2, p. 50]). Theorem 2, which establishes the nonexistence of a group which is $\left(\mathbf{N}_{0}, K_{1}\right)$-weakly universal, solves a problem of B. H. Neumann (see [2, p. 211, Problem 17]).

1. Definitions. An 0-group is a group G for which there exists a linear ordering relation \leqq on G satisfying the following condition :
$a \leqq b$ implies $c a d \leqq c b d$ for all $a, b, c, d \in G$. For a group G the commutator of x and y in G is denoted $[x, y]=x^{-1} y^{-1} x y$; for subsets A and B of $G,[A, B]$ is the subgroup of G generated by $\{[a, b]: a \in A, b \in B\} ; G^{\prime}=[G, G] ; G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right]$. Let F be the free
