ON COMMUTATIVE ENDOMORPHISM RINGS

WOLMER V. VASCONCELOS

This note deals with a finitely generated faithful module E over a commutative semi-prime noetherian ring R, with commutative endomorphism ring $\operatorname{Hom}_R(E, E) = \Omega(E)$. It is shown that E is identifiable to an ideal of R whenever $\Omega(E)$ lacks nilpotent elements; a class of examples with $\Omega(E)$ commutative but not semi-prime is discussed.

1. Main result. Throughout R will denote a commutative noetherian ring and modules will be finitely generated. In order to use the full measure of the ring, we shall consider mostly faithful modules. As for notation, unadorned \otimes and Hom are taken over the base ring.

In case R is semi-prime (meaning here: no nilpotent elements distinct from 0) we recall that its total ring of quotients K is semi-simple, and thus a direct sum of fields $K = \bigoplus \sum K_i, 1 \leq i \leq n$. Any ideal I of R has the property that Hom (I, I) is commutative and semi-prime: for if S denotes the set of regular elements of R,

Hom
$$(I, I) \subseteq$$
 Hom $(I, I)_s =$ Hom_{*Rs*} (I_s, I_s) .

But this last is a subring of K. The content of the next theorem is precisely a converse to this observation.

THEOREM 1.1. Let E be a finitely generated faithful module over the semi-prime ring R. Then, if Hom (E, E) is commutative and semi-prime, E is isomorphic to an ideal of R.

Proof. Denote by T the torsion submodule of E, i.e., let T be the set of elements of E annihilated by a regular element of R. If T = 0, then Hom $(E, E) \subseteq$ Hom $(E, E)_s = \text{Hom}_{R_s}(E_s, E_s)$; using the decomposition of $R_s = K$ as a direct sum of fields,

$$\operatorname{Hom}_{K}(E \otimes K, E \otimes K) = \bigoplus \sum \operatorname{Hom}_{K_{i}}(E \otimes K_{i}, E \otimes K_{i})$$
.

Since $\operatorname{Hom}_{K}(E \otimes K, E \otimes K)$ is commutative, we must have, for each $i, E \otimes K_{i} = 0$ or isomorphic to K_{i} . This allows identification of E_{s} to a submodule of K and consequently of E to an ideal of R, since E is finitely generated.

Assume then, by way of contradiction, $T \neq 0$ and consider the exact sequence

$$0 \longrightarrow T \longrightarrow E \xrightarrow{\pi} F \longrightarrow 0 .$$