MACDONALD'S THEOREM FOR QUADRATIC JORDAN ALGEBRAS

ROBERT E. LEWAND AND KEVIN McCRIMMON

Macdonald's Theorem says that if an identity in three variables x, y, z which is linear in z holds for all special Jordan algebras, it holds for all Jordan algebras. We show this is equivalent to saying the universal quadratic envelope $\mathcal{UQE}(\mathfrak{Z}^{(2)})$ of the free Jordan algebra $\mathfrak{Z}^{(2)}$ on two generators x, y is canonically isomorphic to the universal compound linear envelope $\mathscr{UCE}(\mathfrak{Z}^{(2)})$. We generalize Macdonald's Theorem from the case of linear Jordan algebras over a field of characteristic $\neq 2$ to quadratic Jordan algebras over an arbitrary ring of scalars, at the same time improving on the results in the linear case by presenting $\mathscr{UQE}(\mathfrak{F}^{(2)})$ in terms of a finite number of generators and relations. Similarly we generalize Macdonald's Theorem with Inverses concerning identities in $x, x^{-1}, y, y^{-1}, z.$ Finally, we prove Shirshov's Theorem that $\mathfrak{I}^{(2)}$ is special.

PART I. MACDONALD'S THEOREM.

1. Free algebras and free products. Throughout this paper Φ will denote a fixed ring of scalars (=unital commutative, associative ring), and "linear space", "linear map", etc. will always mean linear with respect to Φ .

Recall [4, p. 000] that a unital quadratic algebra $\mathfrak{Q}=(\mathfrak{X},\,U,\,1)$ is a linear space \mathfrak{X} together with a quadratic mapping $x\to U(x)=U_x$ of \mathfrak{X} into $\mathrm{Hom}_{\mathfrak{p}}(\mathfrak{X},\,\mathfrak{X})$ and a unit element $1\in\mathfrak{X}$ satisfying $U_1x=x$ and $\{x\,1\,y\}=\{x\,y\,1\}$ for all $x,\,y$ (where, as usual, $\{x\,y\,z\}=U_{x,z}y=\{U_{x+z}-U_x-U_z\}y$ is trilinear). A homomorphism $\varphi\colon \mathfrak{Q}\to \tilde{\mathfrak{Q}}$ is a linear map satisfying

$$arphi(1) = \widetilde{1} \quad arphi(U_x y) = \widetilde{U}_{arphi(x)} arphi(y)$$
 .

An ideal is a subspace $\Re \subset \mathfrak{D}$ such that $U_{\Re} \mathfrak{D} \subset \Re$, $U_{\mathfrak{D}} \mathfrak{R} \subset \Re$, $\{\Re \mathfrak{D} \mathfrak{D}\} \subset \Re$. Given any set X we can construct a free unital quadratic algebra $\mathscr{F} \mathscr{Q}(X)$ on X with an imbedding $i: X \to \mathscr{F} \mathscr{Q}(X)$ having the following universal property: any (set-theoretic) map $\varphi \colon X \to \mathfrak{D}$ of X into a unital quadratic algebra \mathfrak{D} extends uniquely to a homomorphism $\widehat{\varphi} \colon \mathscr{F} \mathscr{Q}(X) \to \mathfrak{D}$, i.e., $\varphi = \widehat{\varphi} \circ i$. The construction goes as follows [1, p. 116]. We recursively define monomials in the elements of X, starting with the empty monomial 1 of degree 0 and the monomials $x \in X$ of degree 1, and using monomials m, n, p of degrees i, j, k to form new monomials (m; n) of degree 2i + j and (m, n; p) = (n, m; p) of degree i + j + k; we identify (1; m) with m, (m, n; 1) with (m, 1; n),