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MACDONALD'S THEOREM FOR QUADRATIC
JORDAN ALGEBRAS

ROBERT E. LEW AND AND KEVIN MCCRIMMON

Macdonald's Theorem says that if an identity in three
variables x, y, z which is linear in z holds for all special
Jordan algebras, it holds for all Jordan algebras. We show
this is equivalent to saying the universal quadratic envelope
^ ^ i ? ( 3 ί { 2 ) ) of the free Jordan algebra S(2) on two generators
x, y is canonically isomorphic to the universal compound linear
envelope ^r<g'g3'(3(2)). We generalize Macdonald's Theorem
from the case of linear Jordan algebras over a field of char-
acteristic Φ2 to quadratic Jordan algebras over an arbitrary
ring of scalars, at the same time improving on the results in
the linear case by presenting ^ ^ g f (3(2)) in terms of a finite
number of generators and relations. Similarly we generalize
Macdonald's Theorem with Inverses concerning identities in
%, 8"1* V, V~\ z> Finally, we prove Shirshov's Theorem that
3(2) is special.

P A R T !• MACDONALD'S THEOREM.

1* Free algebras and free products* Throughout this paper Φ
will denote a fixed ring of scalars ( = unital commutative, associative
ring), and "linear space", "linear map", etc. will always mean linear
with respect to Φ.

Recall [4, p. 000] that a unίtal quadratic algebra £} = (36, U, 1) is
a linear space X together with a quadratic mapping x —> U(x) = Ux of X
into Homφ (X, X) and a unit element 1 e X satisfying UyX = x and {x 1 y} =
{x y 1} for all x, y (where, as usual, {x y z} = Ux,2y = {Ux+Z - Ux— Uz}y
is trilinear). A homomorphism φ:£ι—>O is a linear map satisfying

φ(l) = ϊ φ(UxV) = Uψ{x)φ{y) .

An ideal is a subspace 3t c Q such that Um£ι c 31, U^JR c 3t, {3ΪOQ} c3ΐ.
Given any set X we can construct a free unital quadratic algebra

^&(X) on X with an imbedding i\X—>^~&{X) having the fol-
lowing universal property: any (set-theoretic) map<£>: X—>£l of X into
a unital quadratic algebra Q extends uniquely to a homomorphism
φ: ^(^(X)—>O, i.e., φ = φo%. The construction goes as follows
[1, p. 116]. We recursively define monomials in the elements of X,
starting with the empty monomial 1 of degree 0 and the monomials
a e l o f degree 1, and using monomials m, n, p of degrees i, j, k to
form new monomials (m; n) of degree 2ί + j and (m, n; p) = (w, m; p)
of degree i + j + jfe; we identify (1; m) with m, (m, n; 1) with (m, 1; ri),
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