ON THE IDEAL STRUCTURE OF SOME ALGEBRAS OF ANALYTIC FUNCTIONS

JOHN E. GILBERT

Using the Beurling-Lax description of invariant subspaces of *H² (R),* **we describe the ideal structure of two large classes of convolution algebras whose Fourier-Laplace Transforms are entire functions. A closed ideal will be characterized by its cospectrum or by its cospectrum together with a nonnegative number related to the "rate of decrease at infinity"; in the latter case, the closed ideals having the same cospectrum form a totally ordered family** $\{I_{\xi}\}, \xi \in [0, \infty)$, with $I_{\xi} \supsetneq I_{\eta}$ whenever *< η.* **New examples of algebras to which the results apply are given.**

The familiar notation for the spaces considered by Schwartz ([9]) is adopted and each space is equipped with its usual topology. Let *If* be the subspace of $\mathcal{C}(R)$ of functions *φ* for which

$$
||\phi||_{k} = \sup_{x \in R, p \leq k} \exp(k|x|) |D^{p}\phi(x)|
$$

is finite for each $k = 0, 1, \dots$; the topology on \mathcal{K} will be the one induced by the semi-norms $||(\cdot)||_k$, $k = 0, 1, \cdots$. Under this topology *J%Γ* is a convolution algebra with separately continuous multiplication. A detailed discussion of $\mathcal X$ along with associated spaces is given in [4], [12] and [13] (note that Zielezny uses \mathcal{K}_1 instead of \mathcal{K}). We recall some of the results in the form most convenient for applica tions here.

Denote by $\mathcal{O}_{\epsilon}(\mathcal{K})$ the convolution operators on \mathcal{K} , i.e., the distributions $S \in \mathcal{D}'(R)$ for which the convolution operator $\phi \to S * \phi$ is well-defined and continuous from *X* into *X*. $\mathscr{O}_s'(\mathscr{K})$ is given the topology it inherits as a subspace of $\mathcal{L}_{b}(\mathcal{K}, \mathcal{K})$, the continuous linear mappings from *5ίΓ* into *3Γ,* when *<Sf^h (3ίΓ, 3ίΓ),* has the topology of uniform convergence on bounded subsets of \mathcal{K} . Alternatively, if \mathscr{K}' is the strong dual of $\mathscr{K}, \mathscr{O}'_{\epsilon}(\mathscr{K})$ can be defined as the space $\mathscr{O}_c'(\mathscr{K}',\mathscr{K}')$ of convolution operators on \mathscr{K}' in the sense of Schw artz ([10], exposé 10) and given the topology acquired as a subspace of $\mathscr{L}_{\mathfrak{b}}(\mathscr{K}',\mathscr{K}')$. These two definitions of $\mathscr{O}_{\mathfrak{c}}'(\mathscr{K})$ are, however, entirely equivalent (cf. $[13, Ths. 2(d'), 4]$).

THEOREM 1. The space $\mathcal{O}_{\epsilon}(\mathcal{K})$ is a convolution algebra for which (i) $(S, T) \rightarrow S \cdot T$ is a separately continuous mapping from $\mathscr{O}_c^{\prime}(\mathscr{K})\times \mathscr{O}_c^{\prime}(\mathscr{K})$ into $\mathscr{O}_c^{\prime}(\mathscr{K})$,