ON THE IDEAL STRUCTURE OF SOME ALGEBRAS OF ANALYTIC FUNCTIONS

JOHN E. GILBERT

Using the Beurling-Lax description of invariant subspaces of $H^2(R)$, we describe the ideal structure of two large classes of convolution algebras whose Fourier-Laplace Transforms are entire functions. A closed ideal will be characterized by its cospectrum or by its cospectrum together with a nonnegative number related to the "rate of decrease at infinity"; in the latter case, the closed ideals having the same cospectrum form a totally ordered family $\{I_{\xi}\}, \ \xi \in [0, \infty)$, with $I_{\xi} \supseteq I_{\eta}$ whenever $\xi < \eta$. New examples of algebras to which the results apply are given.

The familiar notation for the spaces considered by Schwartz ([9]) is adopted and each space is equipped with its usual topology. Let \mathscr{K} be the subspace of $\mathscr{C}(R)$ of functions ϕ for which

$$||\phi||_{k} = \sup_{x \in R, p \leq k} \exp(k|x|)|D^{p}\phi(x)|$$

is finite for each $k = 0, 1, \cdots$; the topology on \mathscr{K} will be the one induced by the semi-norms $||(\cdot)||_k$, $k = 0, 1, \cdots$. Under this topology \mathscr{K} is a convolution algebra with separately continuous multiplication. A detailed discussion of \mathscr{K} along with associated spaces is given in [4], [12] and [13] (note that Zielézny uses \mathscr{K}_1 instead of \mathscr{K}). We recall some of the results in the form most convenient for applications here.

Denote by $\mathcal{O}'_{c}(\mathscr{K})$ the convolution operators on \mathscr{K} , i.e., the distributions $S \in \mathscr{D}'(R)$ for which the convolution operator $\phi \to S * \phi$ is well-defined and continuous from \mathscr{K} into \mathscr{K} . $\mathcal{O}'_{c}(\mathscr{K})$ is given the topology it inherits as a subspace of $\mathscr{L}_{b}(\mathscr{K}, \mathscr{K})$, the continuous linear mappings from \mathscr{K} into \mathscr{K} , when $\mathscr{L}_{b}(\mathscr{K}, \mathscr{K})$, has the topology of uniform convergence on bounded subsets of \mathscr{K} . Alternatively, if \mathscr{K}' is the strong dual of $\mathscr{K}, \mathscr{O}'_{c}(\mathscr{K})$ can be defined as the space $\mathcal{O}'_{c}(\mathscr{K}', \mathscr{K}')$ of convolution operators on \mathscr{K}' in the sense of Schwartz ([10], exposé 10) and given the topology acquired as a subspace of $\mathscr{L}_{b}(\mathscr{K}', \mathscr{K}')$. These two definitions of $\mathcal{O}'_{c}(\mathscr{K})$ are, however, entirely equivalent (cf. [13, Ths. 2(d'), 4]).

THEOREM 1. The space $\mathcal{O}'_{c}(\mathscr{K})$ is a convolution algebra for which (i) $(S, T) \rightarrow S * T$ is a separately continuous mapping from $\mathcal{O}'_{c}(\mathscr{K}) \times \mathcal{O}'_{c}(\mathscr{K})$ into $\mathcal{O}'_{c}(\mathscr{K})$,