THE SUSLIN-KLEENE THEOREM FOR V_{κ} WITH COFINALITY(κ) = ω

C. C. CHANG AND YANNIS N. MOSCHOVAKIS

It is easy to extend to arbitrary structures $\mathfrak{A} = \langle A, R_1, \dots, R_l f_1, \dots, f_m \rangle$ the concepts of \prod_1^1 and inductively definable relations, which are familiar for the structure of the integers. The second author showed in a recent paper that these two concepts coincide for countable \mathfrak{A} that satisfy certain mild definability conditions—this is a generalization of the classical Suslin-Kleene theorem. Here we generalize the Suslin-Kleene theorem in a different direction.

MAIN RESULT. Let V_{κ} be the set of sets of rank less than κ , i.e., $V_0 = \phi$, $V_{\xi+1} =$ power of V_{ξ} , $V_{\kappa} = \bigcup_{\xi < \kappa} V_{\xi}$, if κ is limit. The classes of inductively definable and $\prod_{i=1}^{1}$ relations on the structure $\mathscr{V}_{\kappa} = \langle V_{\kappa}, \in \upharpoonright V_{\kappa} \rangle (\kappa \ge \omega)$ coincide if and only if κ is a limit ordinal with cofinality ω .

This implies several corollaries about the class of $\prod_{i=1}^{1}$ relations on V_{κ} , when cofinality $(\kappa) = \omega$, e.g., that it has the reduction property.

The nontrivial part of the theorem is the implication $\prod_{i=1}^{1} \Rightarrow inductively$ definable for \mathscr{V}_{κ} with $cofinality(\kappa) = \omega$.

1. Proof of the main result. We assume familiarity with [7], whose notation we shall use.

Notice first that for each $\kappa \geq \omega$, \mathscr{V}_{κ} is an *acceptable* structure, in the sense of [7]. This is immediate for limit κ , by taking the ordinary set-theoretic pair and the standard ω for the integers within V_{κ} . For successor κ the proof is by induction; let $\kappa = \lambda + 1$, let $(,)_{\lambda}$ be a definable pair in \mathscr{V}_{λ} , for x_1, \dots, x_n in V_{κ} put

$$\langle x_1, \cdots, x_n \rangle = \{(1, u)_{\lambda} : u \in x_1\} \cup \cdots \cup \{(n, u)_{\lambda} : u \in x_n\}.$$

These *n*-tuple functions are definable in \mathscr{V}_{κ} and using them one can easily define a pair for \mathscr{V}_{κ} and also show that first-order definability on \mathscr{V}_{κ} is preserved under inductive definitions.

Since \mathscr{V}_{κ} is acceptable, the inductively definable relations on \mathscr{V}_{κ} are $\prod_{i=1}^{1}$ by the argument given in §3 of [7]. Also, if $\kappa \geq \omega$ and κ is a successor or cofinality $(\kappa) > \omega$, then the relation

$$S \in WF \Leftrightarrow$$
 there is no sequence $u_0, u_1, \dots,$ so that
 $(n)[(u_n, u_{n+1}) \in S]$

is first-order definable on \mathscr{V}_{κ} , so that by the usual analysis of trans-