OPERATORS THAT COMMUTE WITH A UNILATERAL SHIFT ON AN INVARIANT **SUBSPACE**

LAVON B. PAGE

A co-isometry on a Hilbert space \mathcal{H} is a bounded operator having an isometric adjoint. If *V* is a co-isometry on *£έf* and *Λ €* is an invariant subspace for *V,* then every bounded operator on $\mathscr M$ that commutes with *V* on $\mathscr M$ can be extended to an operator on $\mathcal H$ that commutes with *V*, and the extension can be made without increasing the norm of the operator. This paper is concerned with unilateral shifts. The questions asked are these: (1) Do shifts enjoy the above property shared by co-isometries and self-adjoint operators? (The answer to this question is "rarely".) (2) Why not? (3) If *S* is a shift, $\mathcal M$ is an invariant subspace for S , S_0 is the restriction of S to \mathcal{M} , and T is a bounded operator on \mathscr{M} satisfying $TS_0 = S_0T$, how tame do T and \mathscr{M} have to be in order that T can be extended (without increasing the norm) to an operator in the commutant of $S²$ Extension is possible in a large number of cases.

The result mentioned above for co-isometries is due to Sz.-Nagy and Foias [8]. (An excellent exposition on the problem is found in [3]; see Theorem 4 in particular.) For self-adjoint operators the state ment is trivial for the simple reason that every invariant subspace is then reducing and any commuting operator on a subspace can be ex tended by simply requiring it to be zero on the orthogonal complement of the subspace.

Recall that a unilateral shift *S* is an isometry having the pro perty that $\bigcap_{n=0}^{\infty} S^n \mathcal{H} = \{0\}.$ The Hilbert space dimension of the subspace $(S\mathcal{H})^{\perp}$ is called the multiplicity of *S*. Within the class of partial isometries on \mathcal{H} the unilateral shifts are in a sense as far removed as possible from the co-isometries and the self-adjoint partial isometries. For shifts have no self-adjoint part, and far from being co-isometric if S is a shift *S*ⁿ* goes strongly to zero. (These and other simple properties of shifts may be deduced from problem 118 and the surrounding material in Halmos [5].)

II. We begin with a complex Hilbert space \mathcal{H} (not necessarily separable) and a unilateral shift S on \mathcal{H} . It is well known that shifts decompose the underlying Hilbert space in the following way:

$$
\mathscr{H} = \bigoplus_{n=0}^{\infty} S^n \mathscr{C} \quad \text{where} \quad \mathscr{C} = (S \mathscr{H})^{\perp} ,
$$