MULTIPLIERS AND UNCONDITIONAL CONVERGENCE OF BIORTHOGONAL EXPANSIONS

W. J. Davis, D. W. Dean and I. Singer

Abstract

We solve in the affirmative a problem raised by B. S. Mityagin in 1961, namely, we prove that if $\left(x_{n}, f_{n}\right)$ is a biorthogonal system for a Banach space E with (f_{n}) total over E, such that the set of multipliers $M\left(E,\left(x_{n}, f_{n}\right)\right)$ contains all sequences (ε_{i}) with $\varepsilon_{i}= \pm 1$ for each i, then $\left(x_{n}\right)$ is an unconditional basis for E.

Let E be a Banach space, and let $\left(x_{n}, f_{n}\right)$ be a biorthogonal system for E (i.e., $\left(x_{n}\right) \subset E$, $\left(f_{n}\right) \subset E^{*}$ and $\left.f_{n}\left(x_{m}\right)=\delta_{n m}\right)$ which has $\left(f_{n}\right)$ total over E (i.e., $f_{n}(x)=0$ for all n implies $x=0$). A scalar sequence $\left(\gamma_{n}\right)$ is called a multiplier of an element x in E with respect to (x_{n}, f_{n}) (write $\left(\gamma_{n}\right) \in M\left(x,\left(x_{n}, f_{n}\right)\right)$) if there is an element y of E such that $f_{n}(y)=\gamma_{n} f_{n}(x)$ for all n (call this element $x_{\left(r_{n}\right)}$). The set of multipliers for E with respect to (x_{n}, f_{n}) is

$$
M\left(E,\left(x_{n}, f_{n}\right)\right)=\cap\left\{M\left(x,\left(x_{n}, f_{n}\right)\right) \mid x \in E\right\}
$$

Here we consider the following two problems:
P 1: (Mityagin [6], Kadec-Pelczynski [4], Pelczynski [7]). Let E be separable and suppose that $M\left(E,\left(x_{n}, f_{n}\right)\right)$ contains all sequences $\left(\varepsilon_{i}\right)$ with $\varepsilon_{i}= \pm 1$ for each i. Is $\left(x_{n}\right)$ an unconditional basis for E ?

P 2: (Kadec-Pelczynski [4]). Let E be separable and suppose $M\left(x,\left(x_{n}, f_{n}\right)\right)$ contains all sequences $\left(\varepsilon_{i}\right)$ with $\varepsilon_{i}= \pm 1$ for each i. Does the formal expansion $\sum_{n} f_{n}(x) x_{n}$ converge unconditionally to x ?

Problem 2 (and hence also problem 1) is known to have an affirmative answer in the following cases [4]:
1°. $M\left(x,\left(x_{n}, f_{n}\right)\right) \supset m$ (the space of bounded sequences).
2°. E contains no subspace isomorphic to c_{0} (the space of sequences converging to 0) and $M\left(x,\left(x_{n}, f_{n}\right)\right) \supset c_{0}$.
$3^{\circ} . \operatorname{sp}\left(f_{n}\right)$ ($=$ linear span of $\left(f_{n}\right)$) is norming (i.e.,

$$
|x|=\sup \left\{|f(x)| \mid f \in \operatorname{sp}\left(f_{n}\right),\|f\| \leqq 1\right\}
$$

defines a norm on E equivalent to the original norm on E).
Problem 1 is known to have an affirmative answer in the case when $\left[x_{n}\right]=E$, where $\left[x_{n}\right]$ denotes the closed linear span of $\left\{x_{n}\right\}$ ([5]; see also [1], Theorem 3.4, implication (4) \Rightarrow (3)).

In the present paper we give an affirmative solution for problem

