GENERALIZED FINAL RANK FOR ARBITRARY LIMIT ORDINALS

DOYLE O. CUTLER AND PAUL F. DUBOIS

Let G be a p-primary Abelian group. The final rank of G can be obtained in two equivalent ways: either as $\inf_{n\in\omega}\{r(p^nG)\}$ where $r(p^nG)$ is the rank of p^nG ; or as $\sup\{r(G/B)\mid B$ is a basic subgroup of G}. In fact it is known that there exists a basic subgroup of G such that r(G/B) is equal to the final rank of G. In this paper are displayed two appropriate generalizations of the above definitions of final rank, $r_{\alpha}(G)$ and $s_{\alpha}(G)$, where α is a limit ordinal. It is shown that the two cardinals $r_{\alpha}(G)$ and $s_{\alpha}(G)$ are indeed the same for any limit ordinal α . In this context one can think of the usual final rank as " ω -final rank".

The final rank of a p-primary Abelian group G is $\inf_{n<\omega} \{r(p^nG)\}$ where $r(p^nG)$ means the rank of p^nG . The same cardinal number is obtained by taking $\sup_{B\in \Gamma} r(G/B)$ where Γ is the set of all basic subgroups of G. In [1] we defined for limit ordinals α , $s_{\alpha}(G)=\inf_{\beta<\alpha} r(p^{\beta}G)$ and $r_{\alpha}(G)=\sup_{H\in \Gamma} r(G/H)$ where Γ is the set of all p^{α} -pure subgroups H of G such that G/H is divisible; it was shown that for accessible ordinals α that $r_{\alpha}(G)=s_{\alpha}(G)$. The proof given there strongly depended on the accessibility of α . In this paper it is proved that $r_{\alpha}(G)=s_{\alpha}(G)$ for any limit ordinal α , at the cost of a considerably more difficult argument.

Throughout we consider a reduced p-primary Abelian group G. We consider cardinal and ordinal numbers in the sense of von Neumann; that is, an ordinal number is a set, namely, the set of all smaller ordinals. Cardinal numbers are ordinal numbers that are not equivalent to any smaller ordinal. The cardinal number of a set Γ is denoted by $|\Gamma|$. The symbol ω denotes the first infinite ordinal. In general the notation and terminology is that of [2] or [3].

1. The lemmas. Let τ be a limit ordinal. We define the final τ -rank of G in two ways, which we will then show are equivalent. Ordinary final rank as defined in [2] corresponds to final ω -rank.

DEFINITION.

- $(1) \quad s_{\tau}(G) = \inf_{\beta < \tau} r(p^{\beta}G[p]).$
- (2) $r_r(G) = \sup \{r(G/H): H \subseteq G, G/H \text{ is divisible, and } 0 \to H \to G \to G/H \to 0 \text{ represents an element of } p^r \text{ Ext } (G/H, H) \}.$

In [1] it is shown that $r_{\tau}(G) \leq s_{\tau}(G)$. To show the converse we