ON A PROBLEM OF DANZER

R. P. BAMBAH AND A. C. WOODS

By a Danzer set S we shall mean a subset of the *n*-dimensional Euclidean space R_n which has the property that every closed convex body of volume one in R_n contains a point of S. L. Danzer has asked if for $n \ge 2$ there exist such sets S with a finite density. The answer to this question is still unknown. In this note our object is to prove two theorems about Danzer sets.

If Λ is a *n*-dimensional lattice, any translate $\Gamma = \Lambda + p$ of Λ will be called a grid Γ ; Λ will be called the lattice of Γ and the determinant $d(\Lambda)$ of Λ will be called the determinant of Γ and will be denoted by $d(\Gamma)$. In §2 we prove

THEOREM 1. For $n \ge 2$, a Danzer set cannot be the union of a finite number of grids.

Let S be a Danzer set and X > 0 a positive real number. Let N(S, X) be the number of points of S in the box $\max_{1 \le i \le n} |x_i| \le X$. Let $D(S, X) = N(S, X)/(2X)^n$. In §3 we prove

THEOREM 2. There exist Danzer sets S with $D(S, X) = 0((\log X)^{n-1})$ as $X \to \infty$.

The case n = 2 of the theorem is known, although no proof seems to have been published. The referee has pointed out that a lower bound of 2 can easily be established for the density of a Danzer set in n = 2, but the authors are unaware of any further results in this direction.

2. Proof of Theorem 1. We shall assume throughout that $n \ge 2$. It is obvious that if S is a Danzer set and T is a volume preserving affine transformation of R_n onto itself, then T(S) is also a Danzer set.

Let S_1, S_2, \cdots be a sequence of sets in R_n . Let S be the set of points X such that there exists a subsequence S_{i_1}, S_{i_2}, \cdots of $\{S_r\}$ and points $X_{i_r} \in S_{i_r}$, such that $X_{i_r} \to X$ as $r \to \infty$. We write

$$S = \lim_{r o \infty} S_r = \lim S_r$$
 .

LEMMA 1. Let $\{S_r\}$ be a sequence of Danzer sets in R_n . Then $S = \lim S_r$ is also a Danzer set.

Proof. Let K be a closed convex body of Volume 1. Then for