ANALYTIC SHEAVES ON KLEIN SURFACES

NEWCOMB GREENLEAF

Morphisms of Klein surfaces are discussed from the sheaf-theoretic standpoint, and the cohomology of an analytic sheaf on a Klein surface is computed.

O. Let \mathfrak{X} be a Klein surface [1], [2]; that is, \mathfrak{X} consists of an underlying space X, which is a surface with boundary, and a family of equivalent dianalytic atlases on X. If (U_{α}, z_{α}) is such an atlas, then $z_{\alpha} \colon U_{\alpha} \to C^+$ is a homeomorphism of the open set U_{α} in X onto an open subset of $C^+ = \{z \in C \mid \operatorname{Im}(z) \geq 0\}$. The functions z_{α} must thus be real on $U_{\alpha} \cap \partial X$, and it is required that $z_{\alpha} \circ z_{\beta}^{-1}$ be dianalytic, that is, either analytic or antianalytic on each component of $z_{\beta}(U_{\alpha} \cap U_{\beta})$.

In this paper we define the structure sheaf of \mathfrak{X} , show that the concept of morphism given in [1], [2] coincides with the concept of a morphism of ringed spaces, and compute the cohomology of analytic sheaves on \mathfrak{X} . If \mathscr{F} is an analytic sheaf on X, and $\widetilde{\mathscr{F}}$ is the lift of \mathscr{F} to the complex double $\widetilde{\mathfrak{X}}$ of \mathfrak{X} , then there is a natural isomorphism

$$H^q(\widetilde{\mathfrak{X}},\widetilde{\mathscr{F}})\cong Cigotimes_{R}H^q(\mathfrak{X},\mathscr{F})$$
 .

1. The structure sheaf $\mathcal{O}_{\mathfrak{X}}$. We define the structure sheaf $\mathcal{O}_{\mathfrak{X}} = \mathcal{O}$ on \mathfrak{X} as follows. If U is open in X, let $\mathcal{O}(U)$ be the ring of holomorphic functions on U (in the sense of [1], [2]). If $U \supset U'$, then the inclusion map is a morphism of Klein surfaces and we have a natural map $\rho_{U'}^{\mathbb{U}} \colon \mathcal{O}(U) \to \mathcal{O}(U')$ (this is not quite an ordinary restriction map since the elements of $\mathcal{O}(U)$ are not quite functions). In particular, if (U_{α}, z_{α}) and (U_{β}, z_{β}) are dianalytic charts on \mathfrak{X} , $U_{\alpha} \supset U_{\beta}$, then

$$\mathscr{O}(U_{\scriptscriptstyle{lpha}}) \cong egin{cases} f\colon U_{\scriptscriptstyle{lpha}}
ightarrow C \mid f(U_{\scriptscriptstyle{lpha}} \cap \partial X) \subset R \} \ , \ & ext{and} \ f \circ z_{\scriptscriptstyle{lpha}}^{\scriptscriptstyle{-1}} ext{ analytic} \end{cases}$$

and

$$ho^{U_lpha}_{U_eta}(f) = egin{cases} f \mid U_eta ext{ where } z_lpha \circ z_eta^{-1} ext{ is analytic} \ \overline{f} \mid U_eta ext{ where } z_lpha \circ z_eta^{-1} ext{ is antianalytic .} \end{cases}$$

It is easily checked that this defines a sheaf of local R-algebras on \mathfrak{X} .

Let $\mathfrak{X}, \mathfrak{Y}$ be Klein surfaces, $f: \mathfrak{Y} \to \mathfrak{X}$ a continuous map. Then f is a morphism [1] if $f(\partial Y) \subset \partial X$ and if for every point $p \in Y$ there