ON THE RANGE OF A DERIVATION

J. P. WILLIAMS

A derivation on an algebra \mathscr{N} is a linear transformation δ on \mathscr{A} with the property $\delta(XY) = X\delta(Y) + \delta(X)Y$ for all $X, Y \in \mathcal{A}$. If $\mathcal{A} = \mathcal{B}(\mathcal{H})$ is the Banach algebra of all bounded linear operators on a complex separable infinitedimensional Hilbert space H then it is known that every derivation δ on \mathscr{A} is inner, that is, there is a bounded operator A on \mathscr{H} such that $\delta(X) = AX - XA = \delta_A(X)$ for all $X \in \mathscr{B}(\mathscr{H})$. (See [8].) In the present note simple necessary and sufficient conditions are obtained that (i) the range $\mathscr{R}(\delta_A)$ be dense in the weak and ultraweak operator topologies; (ii) the norm closure of the range contain the ideal \mathcal{K} of compact operators on \mathcal{H} , (iii) the set of commutators BX - XB where B belongs to the C*-algebra generated by A and X is arbitrary be weakly or ultraweakly dense in $\mathscr{B}(\mathscr{H})$. The commutant of the range of a derivation is also computed and it is shown that the ranges of any two nonzero derivations have nonzero intersection.

1. If A and B are bounded operators on \mathscr{H} then the identities $\delta_A + \delta_B = \delta_{A+B}, \, \delta_A \delta_B - \delta_B \delta_A = \delta_{AB-BA}$ show that the sum and Lie product of two (inner) derivations is a derivation. However the product $\delta_A \delta_B$ is a derivation only in the trivial cases:

THEOREM 1. Let $A, B \in \mathscr{B}(\mathscr{H})$. The $\delta_A \delta_B$ is a derivation if and only if A or B is a scalar multiple of the identity operator.

Therefore δ is a derivation if and only if

$$(1) \qquad \qquad \delta_{\scriptscriptstyle A}(X)\delta_{\scriptscriptstyle B}(Y) + \delta_{\scriptscriptstyle B}(X)\delta_{\scriptscriptstyle A}(Y) = 0$$

for all $X, Y \in \mathscr{B}(\mathscr{H})$. Replacing X by XZ in (1) we get

$$0 = X \delta_{\scriptscriptstyle A}(Z) \delta_{\scriptscriptstyle B}(Y) + \delta_{\scriptscriptstyle A}(X) Z \delta_{\scriptscriptstyle B}(Y) + X \delta_{\scriptscriptstyle B}(Z) \delta_{\scriptscriptstyle A}(Y) + \delta_{\scriptscriptstyle B}(X) Z \delta_{\scriptscriptstyle A}(Y)$$

so that

(2)
$$\delta_A(X)Z\delta_B(Y) + \delta_B(X)Z\delta_A(Y) = 0$$