ON THE RANGE OF A DERIVATION

J. P. Williams

A derivation on an algebra \mathscr{A} is a linear transformation δ on \mathscr{A} with the property $\delta(X Y)=X \delta(Y)+\delta(X) Y$ for all $X, Y \in \mathscr{A}$. If $\mathscr{A}=\mathscr{B}(\mathscr{H})$ is the Banach algebra of all bounded linear operators on a complex separable infinitedimensional Hilbert space $\mathscr{\mathscr { C }}$ then it is known that every derivation δ on \mathscr{A} is inner, that is, there is a bounded operator A on \mathscr{H} such that $\delta(X)=A X-X A=\delta_{A}(X)$ for all $X \in \mathscr{B}(\mathscr{O})$. (See [8].) In the present note simple necessary and sufficient conditions are obtained that (i) the range $\mathscr{R}\left(\delta_{A}\right)$ be dense in the weak and ultraweak operator topologies; (ii) the norm closure of the range contain the ideal \mathscr{K}^{-}of compact operators on \mathscr{H}, (iii) the set of commutators $B X-X B$ where B belongs to the C^{*}-algebra generated by A and X is arbitrary be weakly or ultraweakly dense in $\mathscr{B}(\mathscr{C})$. The commutant of the range of a derivation is also computed and it is shown that the ranges of any two nonzero derivations have nonzero intersection.

1. If A and B are bounded operators on \mathscr{H} then the identities $\delta_{A}+\delta_{B}=\delta_{A+B}, \delta_{A} \delta_{B}-\delta_{B} \delta_{A}=\delta_{A B-B A}$ show that the sum and Lie product of two (inner) derivations is a derivation. However the product $\delta_{A} \delta_{B}$ is a derivation only in the trivial cases:

Theorem 1. Let $A, B \in \mathscr{B}(\mathscr{C})$. The $\delta_{A} \delta_{B}$ is a derivation if and only if A or B is a scalar multiple of the identity operator.

Proof. Let $\delta=\delta_{A} \delta_{B}$. Then

$$
\begin{aligned}
\delta(X Y) & =\delta_{A}\left(\delta_{B}(X Y)\right)=\delta_{A}\left(X \delta_{B}(Y)+\delta_{B}(X) Y\right) \\
& \left.=X \delta_{A} \delta_{B}(Y)\right)+\delta_{A}(X) \delta_{B}(Y)+\delta_{A}\left(\delta_{B}(X)\right) Y+\delta_{B}(X) \delta_{A}(Y) \\
& =X \delta(Y)+\delta(X) Y+\delta_{A}(X) \delta_{B}(Y)+\delta_{B}(X) \delta_{A}(Y)
\end{aligned}
$$

Therefore δ is a derivation if and only if

$$
\begin{equation*}
\delta_{A}(X) \delta_{B}(Y)+\delta_{B}(X) \delta_{A}(Y)=0 \tag{1}
\end{equation*}
$$

for all $X, Y \in \mathscr{B}(\mathscr{O})$. Replacing X by $X Z$ in (1) we get

$$
0=X \delta_{A}(Z) \delta_{B}(Y)+\delta_{A}(X) Z \delta_{B}(Y)+X \delta_{B}(Z) \delta_{A}(Y)+\delta_{B}(X) Z \delta_{A}(Y)
$$

so that

$$
\begin{equation*}
\delta_{A}(X) Z \delta_{B}(Y)+\delta_{B}(X) Z \delta_{A}(Y)=0 \tag{2}
\end{equation*}
$$

