SOME RESTRICTED PARTITION FUNCTIONS: CONGRUENCES MODULO 11

D. B. Lahiri

Ramanujan's congruences for the unrestricted partition function $p(n)$ with 5,7 and 11 as moduli can be shown to be equivalent to precisely similar congruences for some restricted partition functions of the type

$$
\begin{equation*}
{ }_{r}^{t} p(n), \tag{1}
\end{equation*}
$$

where to determine the value of (1) we count all the unrestricted partitions of n excepting those which contain any number of the forms $t n$ or $t n \pm r$ as a part. The purpose of the present paper is to deal with congruences modulo 11.

In [5] the author has established a number of congruences modulo 3 for (1) with certain selected values of t and r. Functions of the type (1) are not new in number theory literature; for example, in the combinatorial interpretation of the famous Rogers-Ramanujan identities one finds

$$
{ }_{1}^{5} p(n), \quad{ }_{2}^{5} p(n)
$$

2. The final results. The restricted partition function (1) with $t=363$ and $r=121$ has a somewhat simpler interpretation. It is easily seen that this function counts the unrestricted partitions of n excepting those which contain 121 or any multiple thereof as a part. We use the simpler notation

$$
\begin{equation*}
{ }^{121} p(n)={ }_{0}^{121} p(n)={ }_{121}^{363} p(n) \tag{2}
\end{equation*}
$$

in the theorems to emphasize this interpretation.
The phrase 'for almost all values of n ' appearing in Theorem 1 means that the number of integers $n \leqq N$ for which any specified congruence does not hold is $o(N)$. We assume ${ }_{r}^{t} p(m)$ to be 1 when $m=0$, and 0 when $m<0$.

Theorem 1. For almost all values of n the following congruences with respect to the modulus 11 hold.

