A SUFFICIENT CONDITION FOR L^p-MULTIPLIERS

SATORU IGARI AND SHIGEHIKO KURATSUBO

Suppose $1 \leq p \leq \infty$. For a bounded measurable function ϕ on the n-dimensional euclidean space \mathbf{R}^n define a transformation T_{ϕ} by $(T_{\phi}f)^{\wedge} = \phi \hat{f}$, where $f \in L^2 \cap L^p(\mathbf{R}^n)$ and \hat{f} is the Fourier transform of f:

$$\hat{f}(\hat{\xi}) = \hat{f} \frac{1}{\sqrt{2\pi}^n} \int_{\mathbb{R}^n} f(x) e^{-i\xi x} dx .$$

If T_{ϕ} is a bounded transform of $L^{p}(\mathbf{R}^{n})$ to $L^{p}(\mathbf{R}^{n})$, ϕ is said to be L^{p} -multiplier and the norm of ϕ is defined as the operator norm of T_{ϕ} .

THEOREM 1. Let $2n/(n+1) and <math>\phi$ be a radial function on R^n , so that, it does not depend on the arguments and may be denoted by $\phi(r)$, $0 \le r < \infty$. If $\phi(r)$ is absolutely continuous and

$$M=||\,\phi\,||_{\infty}+\left(\sup_{R>0}R\int_{_R}^{^{2R}}\left|rac{d}{dr}\,\phi(r)
ight|^{^2}dr
ight)^{^{1/2}}<\infty$$
 ,

then ϕ is an L^p -multiplier and its norm is dominated by a constant multiple of M.

To prove this theorem we introduce the following notations and Theorem 2. For a complex number $\delta = \sigma + i\tau$, $\sigma > -1$, and a reasonable function f on \mathbb{R}^n the Riesz-Bochner mean of order δ is defined by

$$s^{\delta}_{\scriptscriptstyle R}(f,\,x) = rac{1}{\sqrt{2\pi}^{\,n}} \!\int_{|\hat{arepsilon}|< R} \! \left(1 - rac{|\hat{arepsilon}|^2}{R^2}\!
ight)^{\!\delta} \, \hat{f}(\hat{arepsilon}) e^{i arepsilon x} d\hat{arepsilon} \; .$$

Put

$$t_R^{\delta}(f, x) = s_R^{\delta}(f, x) - s_R^{\delta-1}(f, x)$$

and define the Littlewood-Paley function by

$$g_{\delta}^{*}(f,\,x) = \left(\int_{0}^{\infty} rac{|\,t_{R}^{\delta}(f,\,x)|^{2}}{R}\,dR
ight)^{\!1/2}$$
 ,

which is introduced by E. M. Stein in [3]. Then we have the following.

Theorem 2. If $2n/(n+2\sigma-1) and <math>1/2 < \sigma < (n+1)/2$, then

$$A \parallel g_\sigma^*(f) \parallel_p \ \leq \ \parallel f \parallel_p \ < A' \parallel g_\sigma^*(f) \parallel_p$$
 ,