ON ITERATED *w**-SEQUENTIAL CLOSURE OF CONES

R. D. MCWILLIAMS

In this paper it is proved that for each countable ordinal number $\alpha \geq 2$ there exists a separable Banach space X containing a cone P such that, if J_x is the canonical map of X into its bidual X^{**} , then the α th iterated w^{*} -sequential closure $K_{\alpha}(J_X P)$ of $J_X P$ fails to be norm-closed in X^{**} . From such spaces there is constructed a separable space W containing a cone P such that if $2 \leq \beta \leq \alpha$, then $K_{\beta}(J_W P)$ fails to be normclosed in W^{**} . Further, there is constructed a (non-separable) space Z containing a cone P such that if $2 \leq \beta < \Omega$, then $K_{\beta}(J_Z P)$ fails to be norm-closed in Z^{**} .

1. If X is a real Banach space and Y a subset of X^{**} , let K(Y) be the set of elements of X^{**} which are w^* -limits of sequences in Y. Let $K_0(Y) = Y$ and inductively let $K_{\alpha}(Y) = K(\bigcup_{\beta < \alpha} K_{\beta}(Y))$ for $0 < \alpha \leq \Omega$, where Ω is the first uncountable ordinal. A cone in X is a subset of X which is closed under addition and under multiplication by nonnegative scalars. Our main theorem extends the result of [6] that if P is a cone in X, then $K_1(J_XP)$ must be norm-closed but $K_2(J_XP)$ can fail to be norm-closed in X^{**} . By contrast it is noted that if S is a compact Hausdroff space and X = C(S) and $\alpha < \Omega$, then $K_{\alpha}(J_XX)$ is norm-closed, even though for example if S is compact, metric, and uncountable, then $K_{\alpha}(J_XX)$ is not w^* -sequentially closed. It is obvious that for each Banach space X and each subset Y of X^{**} , $K_{\Omega}(Y)$ is w^* -sequentially closed and hence norm-closed.

In [7] a Banach space X was exhibited such that $K_2(J_XX)$ is not norm-closed. Whether $K_{\alpha}(J_XX)$ can fail to be norm-closed for $2 < \alpha$ $< \Omega$ is not known to the author. However, in the present paper it will be convenient to use constructions involving spaces studied in [7].

Section 2 is devoted to a useful relationship between w^* -sequential convergence and pointwise convergence of bounded sequences of functions, § 3 to further study of a space constructed in [7], and §§ 4 and 5 to preparation for and proof of the main theorems.

2. Let S be a compact Hausdorff space, B(S) the Banach space of bounded real functions on S with the supremum norm, and C(S)the closed subspace of B(S) consisting of the continuous real functions on S. If A is a subset of B(S), let L(A) be the set of all pointwise limits of bounded sequences in A, and let $L_{\alpha}(A)$ be defined inductively by $L_0(A) = A$ and $L_{\alpha}(A) = L(\bigcup_{\beta < \alpha} L_{\beta}(A))$ for each ordinal α such that $0 < \alpha \leq \Omega$.

If X is a norm-closed subspace of C(S) and $z \in L_{\rho}(X)$, then z is