A SEMILATTICE DECOMPOSITION INTO SEMIGROUPS HAVING AT MOST ONE IDEMPOTENT

Mohan S. Putcha and Julian Weissglass

A semigroup S is said to be *viable* if ab = ba whenever ab and ba are idempotents. The main theorem of this article proves in part that S is a viable semigroup if and only if S is a semi-lattice of \mathscr{S} -indecomposable semigroups having at most one idempotent.

Furthermore, each semigroup appearing in the decomposition has a group ideal whenever it has an idempotent. Also included as part of the main theorem is the more elementary result that S is viable if and only if every \mathcal{J} -class contains at most one idempotent.

Throughout S will denote a semigroup and E = E(S) the set of idemotents of S.

DEFINITION. Let $a, b \in S$. We say a | b if there exist $x, y \in S$ such that ax = ya = b. The set-valued function \mathfrak{M} on S is defined by $\mathfrak{M}(a) = \{e | e \in E, a | e\}$. The relation δ on S is defined by $a \ \delta b$ if $\mathfrak{M}(a) = \mathfrak{M}(b)$.

Our first goal is to show that if S is viable then δ is a congruence on S and S/δ is the semilattice described above.

LEMMA 1. Let S be viable. If $ab = e \in E$, then bea = e.

Proof. $(bea)^2 = beabea = bea$. Hence $bea \in E$. But cleary $abe = e \in E$. Hence bea = abe = e.

LEMMA 2. Let S be viable. Suppose $a \in S$ and $e \in E$. Then $a \mid e$ if and only if $e \in S^{1}aS^{1}$.

Proof. If a | e, then $e \in S^{i}aS^{i}$ by definition. Conversely assume e = sat with $s, t \in S^{i}$. By (1), ates = e and tesa = e. Therefore a | e.

THEOREM 3. Let S be viable. Then

(i) δ is a congruence relation on S containing Green's relation ${\mathscr H}.$

(ii) S/δ is a semilattice and

(iii) each δ -class contains at most one idempotent and a group ideal whenever it contains an idempotent.

Proof. (i) Clearly δ is an equivalence relation. We will show that δ is right compatible. Assume $a \ \delta \ b$. If $ac | e \in E$, then