INTEGRAL REPRESENTATION OF EXCESSIVE FUNCTIONS OF A MARKOV PROCESS

RICHARD DUNCAN

Let X_t be a standard Markov process on a locally compact separable metric space E having a Radon reference measure. Let $\mathcal S$ denote the set of locally integrable excessive functions of X_t and $ex \mathscr{S}$ the set of elements lying on the extremal rays of \mathcal{S} . Then if $u \in ex \mathcal{S}$ is not harmonic, it is shown that there is an $x \in E$ such that $P_V u = u$ for all neighborhoods V of x where P_V is the hitting operator of V. A regularity condition is introduced which guarantees that two functions in \mathcal{S} having the above property at x are proportional. A subset $\hat{E} \subset E$ and a metric topology on \hat{E} are defined which allows one to represent each potential $p \in \mathscr{S}$ in the form $p(x) = u(x, y)\nu(dy)$ for some finite Borel measure $\nu \ge 0$ on \hat{E} . Here the function $u: E \times \hat{E} \rightarrow [0, \infty]$ is measurable with respect to the product Borel field and has the property that for each $y \in \hat{E}$ the function $x \rightarrow u(x, y)$ is an extremal excessive function. In the course of this study a dual potential operator is introduced and some of its properties are investigated.

In §2 we introduce the notation and assumptions which will be assumed to hold throughout the paper. Section 3 begins our study of $ex \mathscr{S}$ and using a result of Meyer [7] we show that to each function $u \in ex \mathscr{S}$ which is not harmonic we can associate a point $x \in E$ such that $P_{v}u = u$ for all open neighborhoods V of x. Here P_{v} is the hitting operator associated with V. We then say that u has support at x in analogy to the property introduced in axiomatic potential theory by Hervé [4]. We then discuss the axiom of proportionality, i.e., when is it true that if $u_1, u_2 \in ex \mathscr{S}$ have support at x, it follows that $u_1 = \alpha u_2$ for some $\alpha \ge 0$. Some conditions are given which guarantee this property.

In §4 we begin the discussion of representation of elements of \mathscr{S} . A uniform integrability condition on \mathscr{S} is imposed and we define a suitable compact, convex set \mathscr{K} in \mathscr{S} . Using the Choquet theorem and the characterization of $ex\mathscr{S}$ established in §3, we define a subset $\hat{E} \subset E$ and a metric topology on \hat{E} which allows us to represent each potential $p \in \mathscr{K}$ in the form $p(x) = \int u(x, y)\nu(dy)$ for some Borel measure $\nu \geq 0$ on \hat{E} . Here $u: E \times \hat{E} \to [0, \infty]$ is a function measurable with respect to the product Borel field on $E \times \hat{E}$ and having the property that the function $x \to u(x, y)$ is an extremal excessive func-