INTEGRAL REPRESENTATION OF EXCESSIVE FUNCTIONS OF A MARKOV PROCESS

RICHARD DUNCAN

Let *X^t* **be a standard Markov process on a locally compact separable metric space** *E* **having a Radon reference measure.** Let $\mathscr S$ denote the set of locally integrable excessive functions of X_t and $ex\mathscr{S}$ the set of elements lying on the extremal rays of \mathscr{S} . Then if $u \in ex\mathscr{S}$ is not harmonic, it is shown that there is an $x \in E$ such that $P_Vu = u$ for all neighborhoods V of x where *Pv* **is the hitting operator of** *V.* **A regularity condition is introduced which guarantees that two functions in** $\mathscr S$ **having** the above property at *x* are proportional. A subset $\hat{E} \subseteq E$ **and a metric topology on** *E* **are defined which allows one to re present each potential** $p \in \mathcal{S}$ in the form $p(x) = \begin{cases} u(x,y)v(dy) \end{cases}$ **for some finite Borel measure** $\nu \ge 0$ on \hat{E} . Here the function $u: E \times \hat{E} \rightarrow [0, \infty]$ is measurable with respect to the product Borel field and has the property that for each $y \in \hat{E}$ the function $x \rightarrow u(x, y)$ is an extremal excessive function. In the course **of this study a dual potential operator is introduced and some of its properties are investigated.**

In § 2 we introduce the notation and assumptions which will be assumed to hold throughout the paper. Section 3 begins our study of $ex\mathscr{S}$ and using a result of Meyer [7] we show that to each function $u \in ex\mathscr{S}$ which is not harmonic we can associate a point $x \in E$ such that $P_{\nu}u = u$ for all open neighborhoods V of x. Here P_{ν} is the hitting operator associated with *V.* We then say that *u* has support at *x* in analogy to the property introduced in axiomatic potential theory by Hervé [4]. We then discuss the axiom of proportionality, i.e., when is it true that if $u_1, u_2 \in ex\mathcal{S}$ have support at x, it follows that $u_1 =$ αu_2 for some $\alpha \geq 0$. Some conditions are given which guarantee this property.

In § 4 we begin the discussion of representation of elements of \mathscr{S} . A uniform integrability condition on *S^* is imposed and we define a suitable compact, convex set $\mathcal X$ in $\mathcal S$. Using the Choquet theorem and the characterization of $ex\mathscr{S}$ established in § 3, we define a subset $\hat{E} \subseteq E$ and a metric topology on \hat{E} which allows us to represent each potential $p \in \mathcal{K}$ in the form $p(x) = \int u(x, y)v(dy)$ for some Borel measure $\nu \geq 0$ on \hat{E} . Here $u: E \times \hat{E} \rightarrow [0, \infty]$ is a function measurable with respect to the product Borel field on $E \times \hat{E}$ and having the property that the function $x \to u(x, y)$ is an extremal excessive func-