GROUPS OF HOMEOMORPHISMS OF NORMED LINEAR SPACES

R. A. McCoy

For X a Hausdorff space let H(X) be the group of homeomorphisms of X. We study here certain subgroups of H(E) where E is an infinite-dimensional normed linear space.

The set of homeomorphisms from a topological space X onto itself forms a group H(X) under composition. There are many topologies which can be given to H(X), some of which may make H(X) a topological group. It is natural to ask about the properties of H(X), both algebraic and topological. Also, what relationships are there between X and H(X)? One way to attack these questions is to study various subgroups of H(X). In this paper we shall investigate certain subgroups of H(E), where E is a normed linear space.

1. Algebraic properties of H(E). Let X be a Hausdorff space. If $A \subset X$, S(A) will denote the set of elements of H(X) which are supported on A. That is, $h \in S(A)$ if and only if $h|_{X-A}$ is the identity on X-A. Let \mathscr{B} be a base for the topology on X. Define B(X)to be the subgroup of H(X) which is generated by those elements of H(X) which are supported on elements of \mathscr{B} . Then $h \in B(X)$ if and only if $h = h_n \cdots h_1$, where for each $i \leq n$, $h_i \in S(B_i)$ for some $B_i \in \mathscr{B}$. A homeomorphism $h \in H(X)$ is said to be stable if h = $h_n \cdots h_1$, where for each $i \leq n$, $h_i \in S(X-U_i)$ for some nonempty open set U_i in X. The stable homeomorphisms of X, SH(X), form a subgroup of H(X).

We shall consider the following possible conditions on *B*.

B1. For every B_1 , $B_2 \in \mathscr{B}$, there exists an $h \in H(X)$ such that $h(B_1) \subset B_2$.

B1'. For every $B_1, B_2 \in \mathscr{B}$, there exists an $h \in B(X)$ such that $h(B_1) \subset B_2$.

B2. For every $B \in \mathscr{B}$, there exists an $x \in B$ and a pairwise disjoint sequence $\{B_i \in \mathscr{B} \mid B_i \subset B, i = 1, 2, \dots\}$ which converges to x (i.e., for every open set U containing x, there is some B_i contained in U), and there exists an $h \in S(B)$ such that $h(B_i) = B_{i+1}$ for every i.

B3. For every $B \in \mathscr{B}$ and $h \in H(X)$, $h(B) \in \mathscr{B}$.

B4. For every $B \in \mathscr{B}$, there exists $B' \in \mathscr{B}$ such that $B \cup B' = X$, and no $B \in \mathscr{B}$ is dense in X.