ORTHODOX SEMIGROUPS

T. E. HALL

An orthodox semigroup is a regular semigroup in which the idempotents form a subsemigroup. The purpose of this paper is to give structure theorems for orthodox semigroups in terms of inverse semigroups and bands.

A different structure theorem for orthodox semigroups in terms of bands and inverse semigroups has already been given by Yamada in [12]; two questions posed in [12] will be answered in the negative. The present paper is the "further paper" mentioned by the author in the final paragraph of $\S1$ [5] and in the Acknowledgement of [5].

2. Preliminaries. We use wherever possible, and usually without comment, the notations of Clifford and Preston [2]; further, for each element a in any semigroup S we define $V(a) = \{x \in S: axa = a$ and $xax = x\}$, the set of inverses of a in S.

RESULT 1 (from Theorem 4.6 [2]). On any band B Green's relation \mathcal{J} is the finest semilattice congruence and each \mathcal{J} -class is a rectangular band.

Let $\phi: B \to Y$ be any homomorphism of B onto a semilattice Ysuch that $\phi \circ \phi^{-1} = \mathscr{J}$. By denoting (for all $e \in B$) J_e by E_{α} where $e\phi = \alpha \in Y$ we obtain B as a semilattice Y of the rectangular bands $\{E_{\alpha}: \alpha \in Y\}$, i.e., $B = \bigcup_{\alpha \in Y} E_{\alpha}$ and for all $\alpha, \beta \in Y$ $E_{\alpha} \cap E_{\beta} = \square$ if $\alpha \neq \beta$, and $E_{\alpha}E_{\beta} \subseteq E_{\alpha\beta}$. It is clear that $\{(e, \alpha) \in B \times Y: e\phi = \alpha\}$ is a subband of $B \times Y$ isomorphic to B.

RESULT 2 [9, Lemma 2.2]. Let ρ be a congruence on a regular semigroup S. Then each ρ -class which is an idempotent of S/ρ contains an idempotent of S.

RESULT 3 (from Theorem 13 [7]). Let ρ be any congruence contained in \mathcal{L} on any semigroup S. Then any elements a and b of S are \mathcal{L} -related in S if and only if a ρ and b ρ are \mathcal{L} -related in S/ ρ .

Henceforth we shall let S denote an arbitrary orthodox semigroup. The following result is part of [3, Theorem 3]; as noted in [4] it had previously been obtained by Schein [10].