FOURIER-STIELTJES TRANSFORMS AND WEAKLY ALMOST PERIODIC FUNCTIONALS FOR COMPACT GROUPS

CHARLES F. DUNKL AND DONALD E. RAMIREZ

Let G be a compact group and H a closed subgroup. A function in the Fourier algebra of H can be extended to a function in the Fourier algebra of G without increase in norm and with an arbitrarily small increase in sup-norm. For G a compact Lie group, the space of Fourier-Stieltjes transforms is not dense in the space of weakly almost periodic functionals on the Fourier algebra of G.

We let G denote an infinite compact group and \hat{G} its dual. We use the notation of [1, Chapters 7 and 8], [2], and [3]. Recall A(G)denotes the Fourier algebra of G (an algebra of continuous functions on G), and $\mathscr{L}^{\infty}(\hat{G})$ denotes its dual space under the pairing $\langle f, \phi \rangle$ $(f \in A(G), \phi \in \mathscr{L}^{\infty}(\hat{G}))$. Further, note $\mathscr{L}^{\infty}(\hat{G})$ is identified with the C^* -algebra of bounded operators on $L^2(G)$ commuting with right translation. The module action of A(G) on $\mathscr{L}^{\infty}(\hat{G})$ is defined by the following: for $f \in A(G), \phi \in \mathscr{L}^{\infty}(\hat{G}), f \cdot \phi \in \mathscr{L}^{\infty}(\hat{G})$ by $\langle g, f \cdot \phi \rangle =$ $\langle fg, \phi \rangle, g \in A(G)$. Also $||f \cdot \phi||_{\infty} \leq ||f||_A ||\phi||_{\infty}$.

Let $\phi \in \mathscr{L}^{\infty}(\widehat{G})$. We call ϕ a weakly almost periodic functional if and only if the map $f \mapsto f \cdot \phi$ from A(G) to $\mathscr{L}^{\infty}(\widehat{G})$ is a weakly compact operator. The space of all such is denoted by $W(\widehat{G})$.

Let M(G) denote the measure algebra of G. For $\mu \in M(G)$, the Fourier-Stieltjes transform of μ , $\mathscr{F}\mu$, is a matrix-valued function in $\mathscr{L}^{\infty}(\hat{G})$ defined for $\alpha \in \hat{G}$ by

$$lpha\mapsto (\mathscr{F}\mu)_{lpha}=\int_{G}T_{lpha}(x^{-1})\ d\mu(x)\ (T_{lpha}\inlpha)$$
 .

We denote the closure of $\mathscr{F} M(G)$ in $\mathscr{L}^{\infty}(\hat{G})$ by $\mathscr{M}(\hat{G})$. In [2], we showed that $W(\hat{G})$ is a closed subspace of $\mathscr{L}^{\infty}(\hat{G})$, and that $\mathscr{M}(\hat{G}) \subset W(\hat{G})$ with the inclusion proper when G is a direct product of an infinite collection of nontrivial compact groups. In this paper, we show the inclusion is proper for all compact Lie groups.

We first state a standard lemma.

LEMMA 1. Let A, B be compact subsets of a topological group G. Suppose $AB \subset U$, U an open subset of G. Then there is an open neighborhood V of the identity e of G such that $AVB \subset U$.