RESTRICTIONS OF BANACH FUNCTION SPACES

DONALD R. CHALICE

Let X be a compact Hausdorfs space. Let C(X) be the space of continuous complex-valued functions on X and A be a function algebra on X, that is a uniformly closed separating subalgebra of C(X) containing the constants. If F is a closed subset of X we say that A interpolates on F if $A \mid F = C(F)$. By a positive measure μ we shall always mean a positive regular bounded Borel measure on X. Let F be a measurable subset of X. We say a subspace S of $L^{p}(\mu)$ interpolates on F if $S \mid F = L^{p}(F) = L^{p}(\mu_{F})$, where μ_{F} is the restriction of μ to F. Let $H^{P}(\mu)$ be the closure of A in $L^{p}(\mu)$ where $1 \leq p < \infty$, and let $H^{\infty}(\mu) = H^2(\mu) \cap L^{\infty}(\mu)$. One question we are concerned with here is whether interpolation of the algebra is sufficient to imply interpolation of its associated H^{p} -spaces. We therefore begin by obtaining necessary and sufficient conditions for a closed subspace of $L^{p}(\mu)$ to have closed restriction in $L^{p}(F)$. These condition are analogous to some obtained by Glicksberg for function algebras. Using these results we obtain theorems about interpolation of certain invariant subspaces, and then apply them to H^p -spaces. In particular we show that when A approximates in modulus and μ is any measure which is not a point-mass, $H^{p}(\mu)$ interpolates only on sets of measure zero. (One sees that A interpolates only on sets of measure zero, so our original question has a trivial answer for these alge-For uniformly closed weak-star Dirichlet algebras bras.) again the answer to our original question is affirmative. Finally we provide an example of an algebra which interpolates such that $H^{\infty}(\mu)$ interpolates and the $H^{p}(\mu)$ do not interpolate for $1 \leq p < \infty$. I am indebted to a paper of Glicksberg for those techniques which inspired the present effort. Below we show that these techniques apply to the L^p situation and to other "similar" situations.

Glicksberg [3] has given necessary and sufficient conditions for interpolation of a closed subspace of C(X). We show here that analogous theorems hold for subspaces of $L^{p}(X)$. Let $A \subset B$ be Banach spaces. A^{\perp} will denote all bounded linear functions functionals on B which annihilate A.

THEOREM 1.1. Let A, A₁, B all be Banach spaces with $A \subset A_1$ and $R: A_1 \rightarrow B$ a nonzero bounded linear transformation. Then R(A)is closed in B if and only if $\exists c \ni : ||h - R(A)^{\perp}|| \leq c ||h^* - A^{\perp}||$ $\forall h \in B^*$, where $h^* = R^*h$. It follows that $c \geq 1/||R||$.