REAL-VALUED CHARACTERS OF METACYCLIC GROUPS

B. G. Basmaji

Abstract

The nonlinear real-valued irreducible characters of metacyclic groups are determined, and the defining relations are given for the metacyclic groups with every nonlinear irreducible character real-valued.

Consider the metacyclic group

$$
G=\left\langle a, b \mid a^{n}=b^{m}=1, a^{k}=b^{t}, b^{-1} a b=a^{r}\right\rangle
$$

where $r^{t}-1 \equiv k r-k \equiv 0(\bmod n)$ and $t \mid m$. Let s be a positive divisor of n and let t_{s} be the smallest positive integer such that $r^{t_{s}} \equiv 1(\bmod s)$. Let χ_{s} be a linear character of $\langle a\rangle$ with kernel $\left\langle a^{s}\right\rangle$ and $\bar{\chi}_{s}$ be an extension of χ_{s} to $K_{s}=\left\langle a, b^{t_{s}}\right\rangle$, see [1]. From [1] the induced character $\bar{\chi}_{s}^{G}$ is irreducible of degree t_{s} and every irreducible character of G is some $\bar{\chi}_{s}^{G}$.

Assume $\bar{\chi}_{s}^{G}$ is nonlinear. Then $K_{s} \subset G \neq K_{s}$. From Lemma 1 of [2], $\bar{\chi}_{s}^{G}$ is real-valued if and only if there is $y \in G$ such that $\left\langle K_{s}, y\right\rangle / D_{s}$ is dihedral or quaternion, where D_{s} is the kernel of $\bar{\chi}_{s}$. Assume such a y exists. Since G / K_{s} is cyclic, t_{s} is even and we may let $y=b^{t_{s} / 2}$. Hence $r^{t_{s} / 2} \equiv-1(\bmod s)$ and $\bar{\chi}_{s}\left(b^{t_{s}}\right)= \pm 1$. Since $\bar{\chi}_{s}\left(b^{t_{s}}\right)^{t / t_{s}}=\chi_{s}\left(a^{k}\right)$, $\bar{\chi}_{s}\left(b^{t_{s}}\right)= \pm 1$ implies either (i) $s \mid(k, n)$, or (ii) $s \mid 2(k, n), s \nmid(k, n)$, and $t=t_{s}$. When (i) occurs, $\bar{\chi}_{s}\left(b^{t_{s}}\right)=1$ if t / t_{s} is odd and $\bar{\chi}_{s}\left(b^{t_{s}}\right)= \pm 1$ if t / t_{s} is even. When (ii) occurs $\bar{\chi}_{s}\left(b^{t_{s}}\right)=-1$. Note that if $\bar{\chi}_{s}\left(b^{t_{s}}\right)=-1$ then $\bar{\chi}_{s}^{G}$ is not realizable in the real field. Using [1] the number of the nonlinear irreducible real-valued characters not realizable in the real field is $\Sigma^{\prime \prime} \phi(s) / t_{s}$ where $\Sigma^{\prime \prime}$ is over all positive divisors s of n such that t_{s} is even, $r^{t_{s} / 2} \equiv-1(\bmod s)$ and either (i) $s \mid(k, n)$ and t / t_{s} even or (ii) $s \mid 2(k, n), s \nmid(k, n)$, and $t=t_{s}$. The number of the nonlinear irreducible real-valued characters is $\Sigma^{\prime} \phi(s) \mid t_{s}+\Sigma^{\prime \prime} \phi(s) / t_{s}$ where Σ^{\prime} is defined in [2, § 2].

Let $\pi=\{p \mid p$ an odd prime dividing $n\}$.
Theorem. Assume G, given as above, is non-abelian. Then every nonlinear irreducible character of G is real-valued if and only if n, m, k, t, t_{p} and r satisfy one of the conditions below.
(a) $m=t$ with either (i) $4 \nmid n, 2 \mid t$, and $t_{p}=t$ for all $p \in \pi$, (ii) $4 \nmid n, 4 \mid t$, and $t_{p}=t / 2$ for all $p \in \pi$, or (iii) $4 \mid n, r=-1, t=2$ or $t=4$.
(b) $m=2 t$ with either (i) $2 \| n, 2 \mid t$, and $t_{p}=t$ for all $p \in \pi$, or

