REAL-VALUED CHARACTERS OF METACYCLIC GROUPS

B. G. BASMAJI

The nonlinear real-valued irreducible characters of metacyclic groups are determined, and the defining relations are given for the metacyclic groups with every nonlinear irreducible character real-valued.

Consider the metacyclic group

$$G = \langle a, b | a^n = b^m = 1, a^k = b^t, b^{-1}ab = a^r \rangle$$

where $r^t - 1 \equiv kr - k \equiv 0 \pmod{n}$ and $t \mid m$. Let s be a positive divisor of n and let t_s be the smallest positive integer such that $r^{t_s} \equiv 1 \pmod{s}$. Let χ_s be a linear character of $\langle a \rangle$ with kernel $\langle a^s \rangle$ and $\overline{\chi}_s$ be an extension of χ_s to $K_s = \langle a, b^{t_s} \rangle$, see [1]. From [1] the induced character $\overline{\chi}_s^a$ is irreducible of degree t_s and every irreducible character of G is some $\overline{\chi}_s^a$.

Assume $\overline{\chi}_s^g$ is nonlinear. Then $K_s \subset G \neq K_s$. From Lemma 1 of [2], $\overline{\chi}_s^g$ is real-valued if and only if there is $y \in G$ such that $\langle K_s, y \rangle / D_s$ is dihedral or quaternion, where D_s is the kernel of $\overline{\chi}_s$. Assume such a y exists. Since G/K_s is cyclic, t_s is even and we may let $y = b^{t_s/2}$. Hence $r^{t_s/2} \equiv -1 \pmod{s}$ and $\overline{\chi}_s(b^{t_s}) = \pm 1$. Since $\overline{\chi}_s(b^{t_s})^{t/t_s} = \chi_s(a^k)$, $\overline{\chi}_s(b^{t_s}) = \pm 1$ implies either (i) $s \mid (k, n)$, or (ii) $s \mid 2(k, n), s \nmid (k, n)$, and $t = t_s$. When (i) occurs, $\overline{\chi}_s(b^{t_s}) = 1$ if t/t_s is odd and $\overline{\chi}_s(b^{t_s}) = \pm 1$ if t/t_s is even. When (ii) occurs $\overline{\chi}_s(b^{t_s}) = -1$. Note that if $\overline{\chi}_s(b^{t_s}) = -1$ then $\overline{\chi}_s^g$ is not realizable in the real field. Using [1] the number of the nonlinear irreducible real-valued characters not realizable in the real field is $\Sigma''\phi(s)/t_s$ where Σ'' is over all positive divisors s of n such that t_s is even, $r^{t_s/2} \equiv -1 \pmod{s}$ and $t = t_s$. The number of the nonlinear irreducible real-valued characters is $\Sigma'\phi(s)|t_s + \Sigma''\phi(s)/t_s$ where Σ' is defined in [2, § 2].

Let $\pi = \{p \mid p \text{ an odd prime dividing } n\}$.

THEOREM. Assume G, given as above, is non-abelian. Then every nonlinear irreducible character of G is real-valued if and only if n, m, k, t, t_n and r satisfy one of the conditions below.

(a) m = t with either (i) $4 \nmid n$, $2 \mid t$, and $t_p = t$ for all $p \in \pi$, (ii) $4 \nmid n$, $4 \mid t$, and $t_p = t/2$ for all $p \in \pi$, or (iii) $4 \mid n$, r = -1, t = 2or t = 4.

(b) m = 2t with either (i) 2 || n, 2 | t, and $t_p = t$ for all $p \in \pi$, or