ASYMPTOTICS FOR A CLASS OF WEIGHTED EIGENVALUE PROBLEMS

PHILIP W. WALKER

Abstract: This paper deals with the asymptotic behavior at infinity of the solutions to $\mathcal{L}(y) = \lambda w y$ on $[a, \infty)$ where \mathcal{L} is an *n*th order ordinary linear differential operator, λ is a nonzero complex number and w is a suitably chosen positive valued continuous functions. As an application the deficiency indices of certain symmetric differential operators in Hilbert space are computed.

1. Preliminaries. Throughout the first three sections \checkmark will denote an operator of the form,

(1.1)
$$\qquad \qquad \swarrow(y) = y^{(n)} + \sum_{k=2}^{n} p_k y^{(n-k)} \quad \text{on } [a, \infty) ,$$

where each of p_2, \dots, p_n is a continuous complex valued function on $[a, \infty)$. In view of the transformation indicated on p. 309 of [2] it results in no great loss of generality to take the coefficient of $y^{(n-1)}$ to be zero, and in order to simplify the exposition we shall do this. We shall be concerned with the behavior at infinity of the solutions to

(1.2)
$$\qquad \qquad \swarrow(y) = \lambda wy \quad \text{on } [a, \infty)$$

where λ is a nonzero complex number and w is an appropriate weight (i.e., positive valued continuous function). For a given \checkmark we shall consider the weights w indicated by the following definition. $\mathscr{L}(a, \infty)$ denotes the Banach space of all complex valued measurable functions which are absolutely Lebesgue integrable on $[a, \infty)$.

DEFINITION. If \checkmark is as in 1.1 the statement that w is an \checkmark -admissible weight means that

(1) w is differentiable, strictly increasing, and unbounded on $[a, \infty)$;

(2) each of $[w'/w^{1+1/n}]'$ and $[(w'/w)^2(1/w^{1/n})]$ is continuous on $[a, \infty)$ and is in $\mathscr{L}(a, \infty)$; and

(3) $p_j/w^{(j-1)/n} \in \mathscr{L}(a, \infty)$ for $j = 2, 3, \dots, n$.

For example if $\swarrow(y)(t) = y''(t) \pm t^{\alpha}y(t)$ for $t \ge 1$ and $w(t) = t^{\beta}$ then w will be an \checkmark -admissible weight if and only if $\beta > 0$ and $\beta > 2(\alpha + 1)$.

We shall demonstrate that when w is an \checkmark -admissible weight the solutions of 1.2 have a particularly simple asymptotic behavior and