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ARITHMETICAL PROPERTIES OF GENERALIZED

RAMANUJAN SUMS

TOM. M. APOSTOL

The sums studied in this paper are defined as follows.
For any two arithmetical functions / and g, let

(1) Sf,g(m, ft) = Σ MϊBikld) ,
d\ίm,k)

where the sum extends over the divisors of the greatest
common divisor (m, k) of the positive integers m and k. It
should be noted that m and k do not enter symmetrically in
(1) unless g is constant.

The sums Sf,g(m, k) generalize the Dirichlet convolution

( 2 ) (

to which they reduce when (m, k) = k. Multiplicative properties and
finite Fourier expansions were obtained in [1]. A famous special case
is Ramanujan's sum ck(m), the sum of the mth powers of the primi-
tive A th roots of unity, for which we have

( 3 ) ck(m) = Σ exp (2πimh/k) = Σ dμ(k/d) ,
h mod k d\ {m,k)
(h,lc)=l

where μ is the Mδbius function. The second sum in (3) is an example
of (1) with f(n) = n and g(n) = μ(n) for all n. When (m, k) = 1 we
have ck(m) = μ(k), and when (m, k) = k we have ck(m) — φ(m), Euler's
totient.

In a study on cyclotomic polynomials, Holder [4] showed that
Ramanujan's sum can also be expressed in closed form as follows:

(4) ck(m) - y «(m/(fe, m)) .
φ(m/(k, m))

The number on the right is called the Von Sterneck function and is
denoted by Φ(m, k). Thus, (4) states that

ck(m) — Φ(m, k) .

The function Φ(m, k) was encountered by Von Sterneck in 1902 [11] in
a study of restricted partitions with summands reduced to their least
residues module m. Its properties were also studied by Nicol and
Vandiver [7].

We derive further properties of the sums Sf,g(m, k). Some of them
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