A GENERALIZATION OF THE PRIME RADICAL IN NONASSOCIATIVE RINGS

HYO CHUL MYUNG

In [5] Tsai defined the Brown-McCoy prime radical for Jordan rings in terms of the quadratic operation and proved basic results for the radical. In this paper we give a definition of the prime radical for arbitrary nonassociative rings in terms of a ^-operation defined on the family of ideals and of a function f of the ring into the family of ideals in the ring. **The prime radical for Jordan or standard rings is obtained** by a particular choice of the $*$ -operation and the function f . **We also extend the results for the Jordan case to weakly** *W* **admissible rings which include the generalized standard rings and therefore alternative and standard rings as well as Jordan rings.**

1. Let K be any nonassociative ring and let $\mathscr{I}(K)$ denote the family of ideals of *K.*

DEFINITION 1. We define a *-operation as a mapping of $\mathscr{I}(K) \times$ $\mathscr{I}(K)$ into the family of additive subgroups of K such that

(*1) for A, B, C, and D in $\mathscr{I}(K)$ if $A \subseteq C$ and $B \subseteq D$, then $A*B\subseteq C*D$,

 $(*2)$ $(0)*A = B*(0) = (0)$ for all A, B in $\mathcal{I}(K)$,

(*3) $\overline{A*B} = \overline{A*B}$ for any homomorphic images \overline{A} and \overline{B} of A and *B* in $\mathscr{I}(K)$.

If K is a Jordan ring, let $U_x = 2R_x^2 - R_{x^2}$ be the quadratic operation and AU_B be the additive subgroup of K generated by xU_y , $x \in A$ and $y \in B$. Then the *U*-operation satisfies the conditions above. If the characteristic is not 2, it is shown in [5] that $AU_A = AA^2$ and is an ideal of *K* for *A* in $\mathscr{I}(K)$.

For any ring K and A, B in $\mathscr{I}(K)$, if we define $A*B$ as the additive subgroup $AB^2 + B^2A + (AB)B + (BA)B$, then $A*B$ also satisfies the conditions in Definition 1. In case *K* is a standard ring, it is shown in [6] that $A*B$ is an ideal of *K* for *A*, *B* in $\mathcal{I}(K)$. If *K* is commutative or anticommutative, then $A*B = AB^2 + (AB)B$. In particular, if *K* is a Lie ring, $A*B$ is an ideal of *K*. Since A^2 is not in general an ideal of K for A in $\mathscr{I}(K)$, but there are considerably broad classes of nonassociative rings in which $A^3 = AA^2 + A^2A$ is an ideal of *K* for every ideal A, this example will be particularly interesting.

We recall that a noncommutative Jordan ring *K* is one satisfying