COMPLETE NON-SELFADJOINTNESS OF ALMOST SELFADJOINT OPERATORS

THOMAS L. KRIETE

Suppose that α is a real-valued measurable function defined on the unit interval [0, 1] and that c is a function in the Lebesgue space $L^2(0, 1)$. Let A be the (not necessarily bounded) operator on $L^2(0, 1)$ associated with the pair (α, c) by

$$(Af)(x) = lpha(x)f(x) + i \ c(x) \int_0^x \overline{c(t)} \ f(t)dt.$$

A has the domain

$$\mathscr{D}(A) = \{f \in L^2(0, 1): \int_0^1 | \alpha(x)f(x) |^2 \ dx < \infty \}$$

which is dense in $L^2(0, 1)$. One easily verifies that the imaginary part $(2i)^{-1}(A - A^*)$ extends to the bounded operator $f \rightarrow 1/2 \langle f, c \rangle c$. Thus A is almost selfadjoint in the sense that it differs from its real part by an operator of rank one.

The operators A are more general than they appear. Livsic showed that every bounded operator B with real spectrum, no selfadjoint part, and with nonnegative imaginary part of rank one is unitarily equivalent to the completely non-selfadjoint part of such an operator A acting on $L^2(0, a)$ for some positive a. This raises the question of when (in terms of α and c) A is completely non-selfadjoint. The main result of this paper answers this question when the pair (α, c) is subject to a mild restriction that is always satisfied when A is bounded.

One consequence (Corollary 3.18) is a negative result concerning the behavior of singular spectral multiplicity under compact perturbations.

We need to establish some conventions and terminology. All Hilbert spaces throughout will be separable. Let B be a densely defined operator on a Hilbert space H with domain $\mathscr{D}(B)$. We will say that a subspace N of H reduces B if $\mathscr{D}(B) \cap N$ and $\mathscr{D}(B) \cap N^{\perp}$ are dense in N and N^{\perp} , respectively, and $B(\mathscr{D}(B) \cap N) \subset N$ and $B(\mathscr{D}(B) \cap$ $N^{\perp}) \subset N^{\perp}$. B is said to be completely non-selfadjoint if the only reducing subspace N for B with the property that the restriction $B \mid N$ is selfadjoint is the zero subspace.

B is dissipative if Im $\langle Bf, f \rangle \geq 0$ for all *f* in $\mathscr{D}(B)$. If in addition $(B + i/2)\mathscr{D}(B) = H$, then *B* is called maximal dissipative. In this case the Cayley transform $C = (B - i/2)(B + i/2)^{-1}$ is a contraction defined on all of *H*. (We have replaced *i* by *i*/2 in the Cayley