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THE USE OF MITOTIC ORDINALS IN CARDINAL
ARITHMETIC

ALEXANDER ABIAN

In this paper, based on the properties of mitotic ordinals,
some results of the cardinal arithmetic are obtained in a rather
natural way.

In what follows, any reference to order among ordinal numbers
is made with respect to their usual order. Thus, if u and v are
ordinals then u ^ v if and only if u g v if and only if "uev or u = v".

DEFINITION. A nonzero ordinal w is called mitotic if and only
if it can be partitioned into W pairwise disjoint subsets each of type
w. Such a partition is called a mitotic partition of w.

For instance, ω is a mitotic ordinal since ω can be partitioned
into denumerably many pairwise disjoint denumerable subsets R{ with
i = 0, 1, 2, , where the elements of Rζ are precisely the ordinals
appearing in the ΐ-th row of the following table:

0 1 3 6 . . .

2 4 7 . . . .

5 8

9

Clearly, each J2f is of type ω.

LEMMA 1. Let w be a mitotic ordinal. Then w is a limit ordinal.
Moreover, for every element Si of a mitotic partition (Si)iew of w we
have:

(1) U Si = sup S{ = w .

Proof. Since Si is of type w we see that St is similar to w. Let
fi be a similarity mapping from w onto £ {. But then by [1, p. 302]
we have x g fi{x) for every xew. Now, assume on the contrary that
w is not a limit ordinal and let k be the last element of w. But
then clearly, k = fi(k) and therefore k e S^ However, since 1 is not
a mitotic ordinal, we see that the mitotic partition of w must have
at least two distinct elements, So and Si. But then ke So and k e Si
which contradicts the fact that So is disjoint from S^ Thus, our as-
sumption is false and w is a limit ordinal.
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