THE USE OF MITOTIC ORDINALS IN CARDINAL ARITHMETIC

ALEXANDER ABIAN

In this paper, based on the properties of mitotic ordinals, some results of the cardinal arithmetic are obtained in a rather natural way.

In what follows, any reference to order among ordinal numbers is made with respect to their usual order. Thus, if u and v are ordinals then $u \leq v$ if and only if $u \subseteq v$ if and only if " $u \in v$ or u = v".

DEFINITION. A nonzero ordinal w is called mitotic if and only if it can be partitioned into \overline{w} pairwise disjoint subsets each of type w. Such a partition is called a mitotic partition of w.

For instance, ω is a mitotic ordinal since ω can be partitioned into denumerably many pairwise disjoint denumerable subsets R_i with $i = 0, 1, 2, \dots$, where the elements of R_i are precisely the ordinals appearing in the *i*-th row of the following table:

0	1	3	6	•	•	•	
2	4	7	•	•	•	•	
5	8	•	•	•	•	•	
9	•	•	•	•	•	•	
•	٠	•	•	•	•	•	•

Clearly, each R_i is of type ω .

LEMMA 1. Let w be a mitotic ordinal. Then w is a limit ordinal. Moreover, for every element S_i of a mitotic partition $(S_i)_{i \in w}$ of w we have:

$$(1) \qquad \qquad \cup S_i = \sup S_i = w \; .$$

Proof. Since S_i is of type w we see that S_i is similar to w. Let f_i be a similarity mapping from w onto S_i . But then by [1, p. 302] we have $x \leq f_i(x)$ for every $x \in w$. Now, assume on the contrary that w is not a limit ordinal and let k be the last element of w. But then clearly, $k = f_i(k)$ and therefore $k \in S_i$. However, since 1 is not a mitotic ordinal, we see that the mitotic partition of w must have at least two distinct elements, S_0 and S_1 . But then $k \in S_0$ and $k \in S_1$ which contradicts the fact that S_0 is disjoint from S_1 . Thus, our assumption is false and w is a limit ordinal.