A COMPLETE COUNTABLE $L^{q}_{w_1}$ THEORY WITH MAXIMAL MODELS OF MANY CARDINALITIES

J. I. MALITZ AND W. N. REINHARDT

Because of the compactness of first order logic, every structure has a proper elementarily equivalent extension. However, in the countably compact language $L^{Q}_{\omega_{t}}$ obtained from first order logic by adding a new quantifier Q and interpreting Qx as "there are at least ω_1 x's such that...," the situation is radically different. Indeed there are structures of countable type which are maximal in the sense of having no proper $L^{Q}_{\omega_{1}}$ -extensions, and the class S of cardinals admitting such maximal structures is known to be large. Here it is shown that there is a countable complete $L^{Q}_{\omega_{1}}$ theory T having maximal models of cardinality κ for each $\kappa \geq \mathfrak{I}_1$ which is in S. The problem of giving a complete characterization of the maximal model spectra of $L^{Q}_{\omega_1}$ theories T remains open: what classes of cardinals have the form $Sp(T) = \{\kappa: there is$ a maximal model of T of cardinality κ } for T a (complete, countable) $L^{Q}_{\omega_1}$ theory.

That S is large is shown in [4]. Assuming the GCH, it is particularly simple to describe: S is the set of uncountable cardinals which are less than the first uncountable measurable cardinal and not weakly compact. Here we will need the fact that $\beth_1 \in S$; this is proved in [4] without assuming the GCH. The countable compactness of $L^q_{\omega_1}$ is shown in Fuhrken [2]. For additional results and references on the model theory of $L^q_{\omega_1}$ see Kiesler [3].

1. Notation and preliminaries.

1.1. Relatively common notation. We identify cardinals with initial ordinals, and each ordinal with the set of smaller ordinals. We use α , β , γ for ordinals, κ , λ , μ for cardinals, and m, n for finite cardinals. $S(X) = \{t: t \subseteq X\}$; cX is the cardinality of $X; \supset_1$ is the cardinality of the continuum; ω_1 the first uncountable cardinal; $\prod_{i \in Y} X_i$ the cartesian product; ${}^{Y}X$ the set of all functions on Y into X, $f \mid x$ the restriction of the function f to x.

The type $\tau \Sigma$ of a set Σ of formulas is the set of non-logical symbols occurring Σ .

In this paper all structures will be relational structures. Capital german letters are used for structures, and the corresponding roman letters for their universes. Alternatively we may write $|\mathfrak{A}|$ for the universe of \mathfrak{A} . The type $\tau \mathfrak{A}$ of \mathfrak{A} is the set of non-logical symbols