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EQUIVARIANT EXTENSIONS OF MAPS

JAN W. JAWOROWSKI

This paper treats extension and retraction properties in
the category .57, of compact metric spaces with periodic maps
of a prime period p; the subspaces and maps in &, are called
equivariant subspaces and maps, respectively. The motivation
of the paper is the following question: Let E be a Euclidean
space and a: £ X E— E X E be the involution (z, y) — (v, %),
i.e., the symmetry with respect to the diagonal. Suppose
that Z is a symmetric (i.e., equivariant) closed subset of ExX FE
which is an absolute retract; that is, Z is a retract of £ X E.
When does there exist a symmetric (i.e., equivariant) retrac-
tion £ X E— Z?

This is an extension problem in the category .&7,. If X
and Y are spaces in % ,, A is a closed equivariant subspace
of X and f: A— Y is an equivariant map, then the existence
of an extension of f does not, in general, imply the existence
of an equivariant extension. It is shown, however, that if A
contains all the fixed points of the periodic map and
dim (X— A) < oo, then a condition for the existence of an exten-
sion is also sufficient for the existence of an equivariant exten-
sion. In particular, it follows that a finite dimensional space X
in %, is an equivariant ANR (i.e., an absolute neighborhood
retract in the category & ,) if and only if it is an ANR and the
fixed point set of the periodic map on X is an ANR. Generally
speaking, the paper deals with the question of symmetry in
extension and retraction problems.

1. Preliminaries. Suppose that a group G acts on spaces X
and Y and that A is an equivariant subspace of X (i.e., A is stable
under the action of G). One can then ask for conditions for the
extistence of an equivariant extension of f; or for conditions under
which the existence of an extension of f implies also the existence
of an equivariant extension. A general theorem of this type is due
to A. Gleason [6] and R. S. Palais [12, p. 19]:

TIETZE-GLEASON THEOREM. Let G be an orthogonal group acting
on a FEuclidean space E by means of orthogonal transformations
and let G act on a normal space X. Let A be a closed equivariant
subset of X and let f: A— E be an equivariant map. Then there
s an equivariant extension g: X — E of f.

T_his theorem is proved by first extending the map f to some
map f: X — E which may not necessarily be equivariant: and then by
averaging f, using a Haar measure on G, to make it equivariant.
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