CYCLIC VECTORS FOR REPRESENTATIONS ASSOCIATED WITH POSITIVE DEFINITE MEASURES: NONSEPARABLE GROUPS

F. P. GREENLEAF AND M. MOSKOWITZ

Let μ be any positive definite measure on a locally compact group, and let $(\pi^{\mu}, \mathscr{H}^{\mu})$ be the associated unitary representation of G. Previous work of the authors' showed that a cyclic vector exists for π^{μ} if G is second countable; there is now a simple proof of this result, due to Hulanicki. Rather elementary conditions on the way μ is related to the geometry of Gare examined which are necessary, or sufficient, for the existence of a cyclic vector. These conditions require μ to be "constant" on cosets (or double cosets) of certain subgroups of G. A conjectured necessary and sufficient conditions is presented. These results are adequate to decide whether or not π^{μ} is cyclic for various nontrivial measures. As a special case it is shown that the left regular representation of G is cyclic $\Leftrightarrow G$ is first countable.

1. Notations. All groups are locally compact, not necessarily second or first countable. The space $C_c(G)$ of continuous functions with compact support is given the usual inductive limit topology. Convolutions f * g of functions in $C_c(G)$ are defined in the usual way; we use the involution operation

$$f^*(x) = \overline{f(x^{-1})} \varDelta(x^{-1})$$

(\varDelta the modular function) which makes $C_{\mathfrak{c}}(G)$ a $||\cdot||_{\mathfrak{l}}$ -dense *-subalgebra of the convolution algebra $L^{1}(G)$. Positive definite measures μ are Radon measures (not necessarily bounded), so that $\mu \in C_{\mathfrak{c}}(G)^{*}$, that satisfy the condition

$$\langle \mu, f^**f \rangle = \int_{\mathcal{G}} (f^**f)(x) d\mu(x) \ge 0, \text{ all } f \in C_{\mathfrak{o}}(G)$$

Positive definiteness is indicated by writing $\mu > 0$. The representation $(\pi^{\mu}, \mathscr{H}^{\mu})$ associated with μ is defined by imposing the conjugate bilinear form

$$(f, g)_{\mu} = \int g^* * f d\mu$$
 for $f, g \in C_c(G)$

on $C_{c}(G)$. Left translation $\lambda_{x}f(y) = f(x^{-1}y)$ preserves this form.

If we write $||f||_{\mu} = (f, f)_{\mu}^{1/2}$, and set $\mathcal{N}^{\mu} = \{f \in C_{c}(G) \colon ||f||_{\mu} = 0\}$, then the quotient map $j_{\mu} \colon C_{c}(G) \to \mathscr{H}_{0}^{\mu} = C_{c}/\mathcal{N}^{\mu}$ maps $C_{c}(G)$ into a