LENGTH OF PERIOD OF SIMPLE CONTINUED FRACTION EXPANSION OF \sqrt{d}

DEAN R. HICKERSON

In this article, the length, p(d), of the period of the simple continued fraction (s.c.f.) for \sqrt{d} is discussed, where d is a positive integer, not a perfect square. In particular, it is shown that

```
p(d) < d^{1/2 + \log 2/\log \log d + O(\log \log \log d/(\log \log d)^2)} .
```

In addition, some properties of the complete quotients of the s.c.f. expansion of \sqrt{d} are developed.

It is well known that the s.c.f. expansion for \sqrt{d} is periodic if d is a positive integer, not a perfect square. Throughout this paper, p(d) will denote the length of this period. It is shown in [2] (page 294), that p(d) < 2d. Computer calculation of p(d) originally suggested that $p(d) \leq 2[\sqrt{d}]$. This was shown to be false for d = 1726, for which p(d) = 88 and $2[\sqrt{d}] = 82$. Further calculation revealed 3 more counterexamples for $d \leq 3000$. They were p(2011) = 94 while $2[\sqrt{2011}] = 88$, p(2566) = 102 while $2[\sqrt{2566}] = 100$, and p(2671) = 104 while $2[\sqrt{2671}] = 102$.

This suggests as a conjecture that

$$p(d) = O(d^{1/2})$$
 and $p(d) \neq o(d^{1/2})$.

It follows from the corollary to Theorem 2 that

$$p(d) = O(d^{1/2+\varepsilon})$$

or more precisely, that

$$p(d) < d^{1/2 + \log 2/\log \log d + O(\log \log \log d/(\log \log d)^2)}$$
 .

We will need the following results which are given in or follow from \$ 7.1-7.4 and 7.7 of [1].

(1) Any periodic s.c.f. is a quadratic irrational number, and conversely.

(2) The s.c.f. expansion of the real quadratic irrational number $(a + \sqrt{b})/c$ is purely periodic if and only if $(a + \sqrt{b})/c > 1$ and $-1 < (a - \sqrt{b})/c < 0$.

(3) Any quadratic irrational number ξ_0 may be put in the form $\xi_0 = (m_0 + \sqrt{d})/q_0$, where d, m_0 , and q_0 are integers, $q_0 \neq 0$, $d \geq 1$, d is not a perfect square, and $q_0 \mid (d - m_0^2)$. We may then define infinite