GEOMETRIC PROPERTIES OF SOBOLEV MAPPINGS

RONALD GARIEPY

If f is a mapping from an open k -cube in R^k into R^n , $2 \leq k \leq n$, whose coordinate functions belong to appropriate Sobolev spaces, then the area of f is the integral with **respect to** *k* **dimensional Hausdorff measure over** *Rⁿ* **of a nonnegative integer valued multiplicity function.**

1. Introduction. If $f: Q \to R^n$, Q an open k-cube in R^k , $2 \leq k \leq n$, is a mapping whose coordinate functions belong to appropriate Sobolev classes, it was shown in [6] that f is $k-1$ continuous and that the area of f , as defined in [5], is equal to the classical Jacobian integral. The purpose of this paper is to investigate, using the theory of currents as in [2], the geometric-measure theoretic properties of such a surface and to show that the area is equal to the integral with respect to *k* dimensional Hausdorff measure in *Rⁿ* of an integer valued multiplicity function.

2. Suppose *k* and *n* are integers with $2 \leq k \leq n$. Let

$$
Q = R^k \cap \{x: \ 0 < x_i < 1 \ \text{ for } \ 1 \leq i \leq k\}
$$

and let $\Lambda(k, n)$ denote the set of all k-tuples $\lambda = (\lambda_1, \dots, \lambda_k)$ of integers such that $1 \leq \lambda_1 < \cdots < \lambda_k \leq n$. Suppose $f: Q \to R^n$, $f =$ $(f^1, \cdots, f^n), \quad f^i \in W^1_{p_i}(Q), \quad p_i > k-1, \text{ and } \sum_{j=1}^k 1/p_{\lambda_j} \leq 1 \text{ whenever }$ $\lambda \in \Lambda(k, n)$. Here $W_p^1(Q)$ denotes those functions in $\tilde{L}^p(Q)$ whose dis tribution partial derivatives are functions in *L^P (Q).*

Let e_1, \dots, e_n be the usual basis for R^n and let

$$
e_{\lambda}=e_{\lambda_1}\wedge\cdots\wedge e_{\lambda_k},
$$

 $\lambda \in \Lambda(k,n)$, denote the corresponding basis for the space of k-vectors in R^n . For $\lambda \in \Lambda(k, n)$ let p^{λ} denote the orthogonal projection of R^n onto *R^k* defined by letting

$$
p^{\lambda}(y) = (y_{\lambda_1}, \cdots, y_{\lambda_k})
$$
 for $y = (y_1, \cdots, y_n) \in R^n$.

For almost every (in the sense of *k* dimensional Lebesgue measure \mathscr{L}_k) $x \in Q$, let $Jf(x) = \sum_{\lambda \in \Lambda(k,n)} Jf^{\lambda}(x)e_{\lambda}$ where Jf^{λ} denotes the determinant of the matrix of distribution partial derivatives of $f^2 = p^2 \circ f$. In $[6]$ it was shown that the area of f, as defined in $[5]$ is equal to $\int_{a} |Jf(x)| dx$ where $|Jf(x)|$ is the Euclidean norm of the *k*-vector *Jf{x).*