GEOMETRIC PROPERTIES OF SOBOLEV MAPPINGS

RONALD GARIEPY

If f is a mapping from an open k-cube in R^k into R^n , $2 \le k \le n$, whose coordinate functions belong to appropriate Sobolev spaces, then the area of f is the integral with respect to k dimensional Hausdorff measure over R^n of a nonnegative integer valued multiplicity function.

- 1. Introduction. If $f: Q \to R^n$, Q an open k-cube in R^k , $2 \le k \le n$, is a mapping whose coordinate functions belong to appropriate Sobolev classes, it was shown in [6] that f is k-1 continuous and that the area of f, as defined in [5], is equal to the classical Jacobian integral. The purpose of this paper is to investigate, using the theory of currents as in [2], the geometric-measure theoretic properties of such a surface and to show that the area is equal to the integral with respect to k dimensional Hausdorff measure in R^n of an integer valued multiplicity function.
 - 2. Suppose k and n are integers with $2 \le k \le n$. Let

$$Q = R^k \cap \{x: \ 0 < x_i < 1 \ \text{for} \ 1 \le i \le k\}$$

and let $\Lambda(k,n)$ denote the set of all k-tuples $\lambda=(\lambda_1,\dots,\lambda_k)$ of integers such that $1\leq \lambda_1<\dots<\lambda_k\leq n$. Suppose $f\colon Q\to R^n,\ f=(f^1,\dots,f^n),\ f^i\in W^1_{p_i}(Q),\ p_i>k-1,\ \text{and}\ \sum_{j=1}^k 1/p_{\lambda_j}\leq 1$ whenever $\lambda\in\Lambda(k,n)$. Here $W^1_p(Q)$ denotes those functions in $L^p(Q)$ whose distribution partial derivatives are functions in $L^p(Q)$.

Let e_1, \dots, e_n be the usual basis for R^n and let

$$e_{\lambda}=e_{\lambda_1}\wedge\cdots\wedge e_{\lambda_k}$$
,

 $\lambda \in A(k, n)$, denote the corresponding basis for the space of k-vectors in R^n . For $\lambda \in A(k, n)$ let p^{λ} denote the orthogonal projection of R^n onto R^k defined by letting

$$p^{\lambda}(y) = (y_{\lambda_1}, \cdots, y_{\lambda_k})$$
 for $y = (y_1, \cdots, y_n) \in \mathbb{R}^n$.

For almost every (in the sense of k dimensional Lebesgue measure \mathscr{L}_k) $x \in Q$, let $Jf(x) = \sum_{\lambda \in A(k,n)} Jf^{\lambda}(x)e_{\lambda}$ where Jf^{λ} denotes the determinant of the matrix of distribution partial derivatives of $f^{\lambda} = p^{\lambda} \circ f$. In [6] it was shown that the area of f, as defined in [5] is equal to $\int_Q |Jf(x)| dx$ where |Jf(x)| is the Euclidean norm of the k-vector Jf(x).