AN ERGODIC PROPERTY OF LOCALLY COMPACT AMENABLE SEMIGROUPS

JAMES C. S. WONG

Let M(S) be the Banach algebra of all bounded regular Borel measures on a locally compact semigroup S with variation norm and convolution as multiplication and $M_0(S)$ the probability measures in M(S). We obtain necessary and sufficient conditions for the semigroup S to have the (ergodic) property that for each $\nu \in M(S)$, $|\nu(S)| = \inf \{ \|\nu*\mu\| \colon \mu \in M_0(S) \}$, an extension of a known result for locally compact groups.

1. Notations and terminologies. We shall follow Hewitt and Ross [9] for basic notations and terminologies concerning integration on locally compact spaces. Let S be a locally compact semigroup with jointly continuous multiplication and M(S) the Banach algebra of all bounded regular Borel measures on S with total variation norm and convolution $\mu * \nu$, μ , $\nu \in M(S)$ as multiplication where

$$\int f d\mu * \nu = \iint f(xy) d\mu(x) d\nu(y) = \iint f(xy) d\nu(y) d\mu(x)$$

for $f \in C_0(S)$ the space of all continuous functions on S which vanish at infinity. (See for example [1], [6], or [18].) Let $M_0(S) = \{\mu \in M(S): \mu \ge 0 \text{ and } ||\mu|| = 1\}$ be the set of all probability measures in M(S). Consider the continuous dual $M(S)^*$ of M(S). Denote by 1 the element in $M(S)^*$ such that $1(\mu) = \int d\mu = \mu(S), \ \mu \in M(S)$. Clearly ||1|| = 1.

2. Convolution of functionals and measures, means. Let $F \in M(S)^*$, $\mu \in M(S)$, we define a linear functional $l_{\mu}F = \mu \odot F$ on M(S)by $\mu \odot F(\nu) = F(\mu * \nu)$, $\nu \in M(S)$. Clearly $\mu \odot F \in M(S)^*$. In fact $\|\mu \odot F\| \leq \|\mu\| \cdot \|F\|$. Similarly we define $F \odot \mu = r_{\mu}F$.

A linear functional $M \in M(S)^{**}$ is called a mean if $M(F) \ge 0$ if $F \ge 0$ and M(1) = 1. Here $F \ge 0$ means $F(\mu) \ge 0$ for all $\mu \ge 0$ in M(S). An equivalent definition is

$$\inf \{F(\mu): \mu \in M_0(S)\} \leq M(F) \leq \sup \{F(\mu): \mu \in M_0(S)\}$$

for any $F \in M(S)^*$.

Consequently ||M|| = M(1) = 1 for any mean M on $M(S)^*$. It follows that the set of means is weak* compact and convex. Each probability measure $\mu \in M_0(S)$ is a mean if we put $\mu(F) = F(\mu), F \in$