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AN ERGODIC PROPERTY OF LOCALLY COMPACT
AMENABLE SEMIGROUPS

JAMES C. S. WONG

Let M(S) be the Banach algebra of all bounded regular
Borel measures on a locally compact semigroup S with variation
norm and convolution as multiplication and M0(S) the pro-
bability measures in M(S). We obtain necessary and sufficient
conditions for the semigroup S to have the (ergodic) property
that for each veM(S), \u(S)\ = inf {\\v*μ\\: μeM0(S)}, an exten-
sion of a known result for locally compact groups.

1* Notations and terminologies* We shall follow Hewitt and

Ross [9] for basic notations and terminologies concerning integration
on locally compact spaces. Let S be a locally compact semigroup
with jointly continuous multiplication and M(S) the Banach algebra
of all bounded regular Borel measures on S with total variation norm
and convolution μ*v, μ, v e M(S) as multiplication where

fdμ*ι> = \^f{xy)dμ{x)dv{y) = \^f{xy)dv{y)dμ{x)

for / e C0(S) the space of all continuous functions on S which vanish
at infinity. (See for example [1], [6], or [18].) Let M0(S) = {μe
M(S):μ^ 0 and \\μ\\ = 1} be the set of all probability measures in
M(S). Consider the continuous dual M(S)* of M(S). Denote by 1
the element in M(S)* such that l(μ) = \dμ = μ(S), μ e M(S). Clearly
| | | | 1

2* Convolution of functionals and measures, means* Let F e
M(S)*,μeM(S), we define a linear functional lμF= μ®F on M(S)
by μ ® F(v) = F(μ * v), v e M(S). Clearly μ®Fe M(S)*. In fact
\\μ®F\\ ^ \\μ\\-\\F\\. Similarly we define F®μ = rμF.

A linear functional ΛfeΛf(S)** is called a mean if M{F) ^ 0 if

F ^ 0 and M(l) = 1. Here F ^ 0 means F(μ) ^ 0 for all μ^O in

M(S). An equivalent definition is

inf {F(μ): μ e M0(S)} ^ M(F) £ sup {F(μ): μ e M0(S)}

for any FeM(S)*.

Consequently ||Λf|| = M(l) = 1 for any mean M on M(S)*. It
follows that the set of means is weak* compact and convex. Each
probability measure μeM0(S) is a mean if we put μ(F) = F(μ),Fe
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