SOME COMMUTANTS IN B(c) WHICH ARE ALMOST MATRICES

B. E. RHOADES AND A. WILANSKY

We determine necessary and sufficient conditions for two linear operators in B(c) to commute. Specializing one of the operators to be a conservative triangular matrix we determine that most such operators have commutants consisting of almost matrices of a special form.

Almost matrices were developed in [10] for reasons not related to this paper, but they find application here in that the commutants in B(c) of certain matrices must be almost matrices.

Let c denote the space of convergent sequences, B(c) the algebra of all bounded linear operators over c, e the sequence of all ones, and e^k the coordinate sequences with a one in the kth position and zeros elsewhere. If $T \in B(c)$, then one can define continuous linear functionals χ and χ_i by $\chi(T) = \lim Te - \sum_k \lim (Te^k)$ and $\chi_i(T) = (Te)_i - \sum_k (Te^k)_i$, $i = 1, 2, \cdots$. (See, e.g. [9, p. 241].) It is known [1, p. 8] that any $T \in B(c)$ has the representation $T = v \otimes \lim H = B$, where B is the matrix representation of the restriction of T to c_0 , the subspace of null sequences, v is the bounded sequence $v = {\chi_i(T)}$, and $v \otimes \lim x = (\lim x)v$ for each $x \in c$.

The second adjoint of T (see, e.g. [1, p. 8] or [10, p. 357]) has the matrix representation

where the b_i 's occur in the representation of $\lim \sigma T \in c'$ as $(\lim \sigma T)(x) = \lim (Tx) = (T) \lim x + \sum_k b_k x_k$; namely, $b_i = \lim Te^i$. With the use of (*) it is easy to describe the commutant of any $Q \in B(c)$.

THEOREM 1. Let $Q = u \otimes \lim A \in B(c)$. Then Com (Q) in $B(c) = \{T = v \otimes \lim A \in B(c): T \text{ satisfies } (1)-(3)\}, where$

(1)
$$u_n \chi(T) + \sum_{k=1}^{\infty} a_{nk} v_k = v_n \chi(Q) + \sum_{k=1}^{\infty} b_{nk} u_k$$
; $n = 1, 2, \cdots$

(2)
$$u_n b_k + \sum_{j=1}^{\infty} a_{nj} b_{jk} = v_n a_k + \sum_{j=1}^{\infty} b_{nj} a_{jk};$$
 $n, k = 1, 2, \cdots$