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THE LOCAL COMPACTNESS OF vX

DouGcLAS HARRIS

Necessary and sufficient conditions are given for the local
compactness of the Hewitt realcompactification vX of a com-
pletely regular Hausdorff space X; the conditions are expressed
in terms of the space X alone. In addition, the local com-
pactness of other extensions is considered.

Introduction. There has been much recent interest in determining
conditions on a completely regular Hausdorff space X that are equi-
valent to the local compactness of its Hewitt realcompactification v X.
This interest stems primarily from the fact that the seemingly artificial
hypothesis “vX is locally compact” enters quite naturally into the
examination of the relation v.X x vY = v(X x Y). Apparently the only
known condition equivalent to the local compactness of vX is one
discussed by Comfort in [1] and [2]. As remarked by Comfort, the
condition is not on X alone, but involves vX essentially in its statement.

In the present paper a condition on X is given which is equivalent
to the local compactness of vX (Theorem 2.7) and a number of known
results are obtained as corollaries of this characterization theorem.
Another characterization (Theorem 2.3) is given of the local compact-
ness of vX in terms of real maximal ideals.

It was shown by Comfort in [1] and [2] that the local pseudo-
compactness of X plays an important role in connection with the local
compactness of vX. The precise role is established below, where it
is shown that the local pseudocompactness of X is equivalent to the
local compactness of the extension »X of X constructed by Johnson
and Mandelker in [9]. In addition a characterization is given of those
spaces for which the extension X constructed by Johnson and Man-
delker is locally compact.

Our attention will be restricted entirely to completely regular
Hausdorff spaces. The terminology and notation of [4] will be used
without further comment.

Given fe C(X) the symbols N(f) and S(f) represent respectively
{ve X: f(x) # 0} and cly{zxe X: f(x) # 0}; these sets are called the
cozero set and the support of f. If A and B are subsets of X, write
A & B if A is completely separated from X — B. We shall frequently
apply [4, 1.15] to construct additional separating zero sets when A < B.

The symbol M? will denote the maximal ideal in C(X) which
corresponds to the point p of 8X, and _#* will denote the corresponding
z-ultrafilter (written A® in [4]). Similarly O® represents the ideal
defined in [4, 7.12] and ~* the corresponding z-filter.
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