THE REALIZATION OF POLYNOMIAL ALGEBRAS AS COHOMOLOGY RINGS

ALLAN CLARK AND JOHN EWING

To the memory of Norman Steenrod

We construct, for certain choices of a group G , a prime p , and a positive integer n , a space $X(G, p, n)$ whose cohomology ring mod *p* is a polynomial algebra, and we classify the polynomial algebras which can be realized as cohomology rings by this construction.

Let Z_p denote the ring of p-adic integers. From Sullivan's work on completions **[15]** it follows that the Eilenberg-MacLane space *K(Z%,* 2) is the p-profinite completion of $K(Z^*, 2)$, and that as a consequence of the *p*-analogue of $[15, 3.9]$ we have

$$
H^*(K(\pmb{Z}_p^n, 2); Z_p) = \pmb{Z}_p[x_1, x_2, \cdots, x_n]
$$

where $\deg x_i = 2$. Now if *G* is a subgroup of $GL(n, Z_p)$ and finite, we have an action of *G* on the space $K(\mathbb{Z}_p^n, 2)$ which passes to its cohomology ring, and we define

$$
X(G, p, n) = K(\pmb{Z}_p^n, 2) \times_{\sigma} EG
$$

where *EG* is the total space of a universal bundle for G.

PROPOSITION. *If p does not divide the order of G, then H*(X(G,* p , *n*); \mathbf{Z}_p is the subalgebra of invariants of $H^*(K)(\mathbf{Z}_p^n, 2)$; \mathbf{Z}_p) under *the action of G.*

Obviously the conclusions of this proposition apply as well with coefficients in the prime field F_p or in the field Q_p of p-adic numbers. For the sake of completeness we sketch a proof.

Proof. From [5, Th. 3.1] and [8] it follows that the cohomology of $X(G, p, n)$ is given by $\operatorname{Ext}_{Z_p(G)}(C_*(EG))$, $C^*(K(Z_p^n, 2))$, where we let \mathbb{Z}_p (*G*) denote the group ring over \mathbb{Z}_p and C_* and C^* denote singular chains with coefficients in *Z^p .* The Eilenberg-Moore spectral sequence associated with this Ext has $E₂$ term determined by

$$
E_{\text{2}}^{r,s} = \text{Ext}^r_{Z_p(G)}(\pmb{Z}_p, H^s(K(\pmb{Z}_p^n, 2); \pmb{Z}_p))
$$

and it follows that for $r > 0$, $|G|E_2^{r,s} = 0$ by the results of [3, Ch. XII, 2.5]. However, $E_2^{r,s}$ is a \mathbb{Z}_p -module and therefore can have only ptorsion. The fact that p does not divide $|G|$ implies that $E_i^{r,s} = 0$