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We construct, for certain choices of a group G, a prime
p, and a positive integer n, a space X{G, p, n) whose cohomo-
logy ring mod p is a polynomial algebra, and we classify the
polynomial algebras which can be realized as cohomology rings
by this construction.

Let Zp denote the ring of p-adic integers. From Sullivan's work
on completions [15] it follows that the Eilenberg-MacLane space K(Z%, 2)
is the p-profinite completion of K(Zn, 2), and that as a consequence
of the p-analogue of [15, 3.9] we have

H*(K(Zl 2); Zv) = Zp[xlf x2, , xΛ

where deg x{ = 2. Now if G is a subgroup of GL(n, Zp) and finite,
we have an action of G on the space K(Zn

p, 2) which passes to its
cohomology ring, and we define

X(G,p,n) = K(Z;,2)xGEG

where EG is the total space of a universal bundle for G.

PROPOSITION. If p does not divide the order of G, then H*(X(G,
p} n); Zp) is the subalgebra of invariants of H*(K)(Zn

p, 2); Zp) under
the action of G.

Obviously the conclusions of this proposition apply as well with
coefficients in the prime field Fp or in the field Qp of p-adic numbers.
For the sake of completeness we sketch a proof.

Proof. From [5, Th. 3.1] and [8] it follows that the cohomology
of X(G, p, n) is given by ExtZp[σ)(C*(EG)), C*(K(Z*P, 2)), where we let
ZP(G) denote the group ring over Zp and C* and C* denote singular
chains with coefficients in Zp. The Eilenberg-Moore spectral sequence
associated with this Ext has E2 term determined by

El>* = Extί p ( β ) (Zp, H°(K(Zl 2); Zp))

and it follows that for r > 0, \G\E£>S = 0 by the results of [3, Ch. XII,
2.5]. However, Er

2'
s is a Z^-module and therefore can have only p-

torsion. The fact that p does not divide \G\ implies that EζtS = 0
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