π -HOMOGENEITY AND π '-CLOSURE OF FINITE GROUPS

ZVI ARAD

The purpose of this paper is to present a proof, under additional conditions, of the following conjecture: Let π be a set of primes, and let all π -subgroups of G be 2-closed. (If $2 \notin \pi$, this condition is satisfied.) If G is π -homogeneous, then G is π' -closed.

All groups considered here are finite. If π is a set of prime numbers, we say that the element x of a group G is a π -element if |x| is divisible only by primes in π . In particular, one may speak of a *p*-element, p a prime. Similarly, a group G is called a π -group if |G| is divisible only by primes in π . In addition, $\pi(G)$ will denote the set of primes dividing |G|. The set of primes not in π will be denoted by π' . A group G is termed π -closed, if the subset of Gconsisting of π -elements is a subgroup of G. We say that a group G is π -homogeneous if $N_G(H)/C_G(H)$ is a π -group for every nonidentity π -subgroup H of G.

It is well known that π' -closed groups are π -homogeneous. The converse, in general, does not hold. For instance, A_5 is not 5-closed, but it is 5'-homogeneous.

For $\pi = \{p\}$, p a prime, the conjecture reduces to Frobenius' theorem ([11], Theorem 7.4.5).

The conjecture is closely connected to other well known problems in group theory. The proof of the conjecture would imply the solution of Baer's problem [3] (see also [5], p. 117), the answer to which is not known.

Baer's Problem. Let $\pi \subseteq \pi(G)$. Suppose that G is π and π' -homogeneous. Is G a direct product of a π -group and a π' -group?

In order to show the connection with Frobenius' problem, we need some additional notation. For any prime p, we denote by $|G|_p$ the highest power of the prime p that divides |G|. Define G to be weakly π -closed if for every subgroup U of G the number of π -elements of U is exactly $\prod_{p \in \pi} |U|_p$.

Baer proved that if G is weakly π -closed then G is π '-homogeneous ([2], Lemma 2). Therefore, in the case that $2 \in \pi$, the proof of the above conjecture would imply also a solution of Frobenius' problem ([2], p. 325).