REGULAR COMPLETIONS OF CAUCHY SPACES

D. C. KENT AND G. D. RICHARDSON

A uniform convergence space is a generalization of a uniform space. The set of all Cauchy filters of some uniform convergence space is called a Cauchy structure. We give necessary and sufficient conditions for the Cauchy structure of some totally bounded uniform convergence space to be precompact; i.e., have a regular completion. Also, it is shown that there is an isomorphism between the set of ordered equivalence classes of strict regular compactifications of a completely regular convergence space and the set of ordered precompact Cauchy structures inducing the given convergence structure.

Preliminaries. Kowalsky [5] has studied completions using only Cauchy filters, described axiomatically, and not necessarily those of a uniform convergence space. This has led others to the notion of a Cauchy space, which is described axiomatically in [2]. The reader is referred to [6], [7], and [8] for a discussion of completions of Cauchy spaces.

For basic definitions of convergence spaces and uniform convergence space, see [3] and [1]. A Hausdorff convergence space (S, q)is compatible with a uniform convergence space iff it satisfies the "Limitierungsaxiom": $\mathfrak{F} \cap \mathfrak{G}$ q-converges to x whenever \mathfrak{F} and \mathfrak{G} both q-converge to x. We will make the assumption that all convergence spaces in this paper satisfy this axiom. The closure operator in a convergence space (S, q) will be denoted by Γ_q . A Hausdorff convergence space (S, q) is called regular if it has the property that $\Gamma_q \mathfrak{F}$ (the filter generated by $\{\Gamma_q F \mid F \in \mathfrak{F}\}$) q-converges to x whenever \mathfrak{F} q-converges to x. The filter \dot{x} denotes the set of all subsets of S containing the set $\{x\}$. If filters \mathfrak{F} and \mathfrak{G} contain disjoint sets, we write " $\mathfrak{F} \vee \mathfrak{G} = 0$ ". The term "ultrafilter" will be abbreviated "u.f."; uniform convergence space will be abbreviated "u.c.s.".

A Cauchy structure \mathscr{C} on a set S is characterized axiomatically in [2] as follows: (1) $\dot{x} \in \mathscr{C}$ for each $x \in S$; (2) $\mathfrak{F} \in \mathscr{C}$ and \mathfrak{G} finer than \mathfrak{F} implies $\mathfrak{G} \in \mathscr{C}$; (3) $\mathfrak{F}, \mathfrak{G} \in \mathscr{C}$ and $\mathfrak{F} \vee \mathfrak{G} \neq 0$ implies $\mathfrak{F} \cap \mathfrak{G} \in \mathscr{C}$. The pair (S, \mathscr{C}) is called a Cauchy space. It should be pointed out that the Cauchy space axioms of [2] are stricter than those of [5] and [7].

A Cauchy space (S, \mathscr{C}) induces a convergence structure q in the following way: $\mathfrak{F} q$ -converges to x iff $\mathfrak{F} \cap \dot{x} \in \mathscr{C}$. Conversely, if (S, q) is a Hausdorff convergence space, then define the associated Cauchy structure \mathscr{C} on $S: \mathfrak{F} \in \mathscr{C}$ iff $\mathfrak{F} q$ -converges. Note that (S, \mathscr{C}) induces