ON THE NIELSEN NUMBER OF A FIBER MAP

DENNIS MCGAVRAN AND JINGYAL PAK

Suppose $\mathscr{T} = \{E, \pi, B, F\}$ is a fiber space such that $0 \rightarrow \pi_1(F) \xrightarrow{i_{\sharp}} \pi_1(E) \xrightarrow{\pi_{\sharp}} \pi_1(B) \rightarrow 0$ is exact. Suppose also that the above fundamental groups are abelian. If $f: E \rightarrow E$ is a fiber preserving map such that $f_{\sharp}(\alpha) = \alpha$ if and only if $\alpha = 0$, then it is shown that $R(f) = R(f') \cdot R(f_b)$ where R(h) is the Reidemeister number of the map h.

A product formula for the Nielsen number of a fiber map which holds under certain conditions was introduced by R. Brown. Let $\mathscr{T} = \{E, \pi, L, (p, q), s^1\}$ be a principal s^1 -bundle over the lens space L(p, q), where \mathscr{T} is determined by $[f_j] \in$ $[L(p, q), cp^{\infty}] \simeq H^2(L(p, q), z) \simeq z_p$. Let $f: E \to E$ be a fiber preserving map such that $f_{b\xi}(1) = c_2, f'_{\sharp}(\bar{l}_p) = \bar{c}_1$, where 1 generates $\pi_1(s^1) \simeq z$ and \bar{l}_p generates $\pi_1(L(p, q)) \simeq z_p$. Then the Nielsen numbers of the maps involved satisfy

$$N(f) = N(f_b) \cdot (d, 1 - c_1, s)$$
,

where d = (j, p) and $s = j/p(c_1 - c_2)$.

I. Introduction. Let $\mathscr{T} = \{E, \pi, B, F\}$ be a fiber space. Any fiber preserving map $f: E \to E$ induces maps $f': B \to B$, and, for each $b \in B$, $f_b: \pi^{-1}(b) \to \pi^{-1}(b)$, where $\pi^{-1}(b) \simeq F$. The map f will be called a fiber map (or bundle map if \mathscr{T} is a bundle).

Let N(g) denote the Nielsen number of a map g. The Nielsen number, N(g), serves as a lower bound on the number of fixed points of a map homotopic to g, and under certain hypotheses, there exists a map homotopic to g with exactly N(g) fixed points. R. Brown and E. Fadell ([2] and [3]) proved the following:

THEOREM. Let $\mathcal{T} = \{E, \pi, B, F\}$ be a locally trivial fiber space, where E, B, and F are connected finite polyhedra. Let $f: E \to E$ be a fiber map. If one of the following conditions holds:

- (i) $\pi_1(B) = \pi_2(B) = 0$.
- (ii) $\pi_1(F) = 0$.

(iii) \mathscr{T} is trivial and either $\pi_1(B) = 0$ or $f = f' \times f_b$ for all $b \in B$ then $N(f) = N(f') \cdot N(f_b)$ for all $b \in B$.

These strong restrictions on the spaces involved eliminate some interesting fiber spaces. For example, any circle bundle over B with $\pi_1(B) \neq 0$ is excluded. Furthermore, if $\pi_1(B) = \pi_2(B) = 0$, then the total space E is $B \times S^1$.

This paper has two objectives. The first is to try to generalize