ON THE MAXIMUM AND MINIMUM OF PARTIAL SUMS OF RANDOM VARIABLES

PEGGY TANG STRAIT

Let X_1, X_2, \cdots, X_n be independent identically distributed random variable with $S_k = X_1 + X_2 + \cdots + X_k$ and $S_k^+ =$ max [0, *S^k].* We shall derive formulas for the computation of $E\left[\min_{1\leq k\leq n} S_k^*\right]$, $E\left[\max_{1\leq k\leq n} S_k\right]$, and $E\left[\min_{1\leq k\leq n} S_k\right]$. *\.* The formulas are then applied to the case of standard normal random variables.

2. Notation, definitions, and preliminary lemmas. Let $x =$ (x_1, \dots, x_n) be a vector with real components and $-x = (-x_1, \dots, x_n)$ $-x_n$). In some instances we shall also assume that the components x_i , $i = 1, 2, \dots$, *n* are rationally independent. (For rational r_i , $r_i x_i +$ $r_x x_2 + \cdots + r_x x_n = 0$ if and only if each $r_i = 0$.) Let $x_{k+n} = x_k$, and $x(k) = (x_k, x_{k+1}, \dots, x_{k+n-1}), k = 1, 2, \dots, n$. Let $s_k = x_1 + x_2 + \dots + x_k$. Call the polygon connecting the points $(0, 0)$, $(1, s_1)$, \dots , (k, s_k) , \dots , (n, s_n) the sum polygon of the vector x , and the line connecting $(0, 0)$ with *(n, sⁿ)* the chord of the sum polygon. The sum polygon for the cyclically permuted vector *x(k)* is defined the same way.

F. Spitzer proved in [2] (see especially page 325, lines 8-12) the following lemma.

LEMMA 1. Let $x = (x_{1}, \dots, x_{n})$ be a vector such that the components x_i , $i = 1, \dots, n$, are rationally independent. Consider the sum poly*gons of the n cyclic permutations of x and prescribe an integer r between* 0 and $n - 1$. The sum polygon of exactly one of the cyclic *permutations of x has the property that exactly r of its vertices lie strictly above its chord.*

We adopt the following notations and definitions. For any real *a9*

(2.1)
$$
a^+ = \max [0, a], \quad a^- = \min [0, a]
$$

a is the permutation on *n* symbols, so that

$$
(2.2) \t\t \sigma x = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma_1 \sigma_2 & \cdots & \sigma_n \end{pmatrix} x = (x_{\sigma_1}, x_{\sigma_2}, \cdots, x_{\sigma_n}).
$$

We write