FUNDAMENTAL GROUPS OF COMPACT COMPLETE LOCALLY AFFINE COMPLEX SURFACES, II

JOHN SCHEUNEMAN

The present article is a continuation of a recent paper by J. P. Fillmore and the author on properly-acting groups Γ of complex affine motions of C^2 such that $\Gamma \setminus C^2$ is compact. In that paper, it was proved that such a group has a normal subgroup Γ_0 of finite index which is either free abelian of rank four or has generators A, B, C, D, with relations

 $ABA^{-1}B^{-1} = C^k (k \ge 1)$

and C and D central.

Here we build on this description up to finite index to determine the groups I' themselves.

1. Introduction. A complete locally affine complex surface X has an orbit-space representation $X = \Gamma \backslash C^2$, where the fundamental group Γ of X is a properly-acting group of complex affine transformations of C^2 . Two such surfaces $\Gamma \backslash C^2$ and $\Gamma' \backslash C^2$ are isomorphic if and only if Γ and Γ' are conjugate subgroups of the group A(2, C) of all complex affine motions of C^2 . Elements of A(2, C) are taken as nonsingular complex matrices $\begin{pmatrix} a & b & r \\ c & d & s \\ 0 & 0 & 1 \end{pmatrix}$ and elements of C^2 are taken as column vectors $\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$; then A(2, C) acts on the left on C^2 in the

usual way.

Fillmore and Scheuneman [2] have shown the following:

THEOREM 1.1. Let $\Gamma \setminus C^2$ be a compact complete locally affine complex surface. Then:

(i) Γ is conjugate in A(2, C) to a subgroup of the group G of all matrices of the form $\begin{pmatrix} 1 & b & r \\ 0 & d & s \\ 0 & 0 & 1 \end{pmatrix}$, and hence may be considered a subgroup of G;

(ii) The homomorphism $\begin{pmatrix} 1 & b & r \\ 0 & d & s \\ 0 & 0 & 1 \end{pmatrix} \mapsto d$, when restricted to Γ , has a kernel Γ_0 which is either free abelian of rank four, or has generators A, B, C, D with relations $ABA^{-1}B^{-1} = C^k(k \ge 1)$ and C and D central in Γ_0 ;

(iii) The image of Γ under the above homomorphism is a finite cyclic group of order t = 1, 2, 3, 4, 5, 6, 8, 10, or 12.