FIXED POINTS AND CHARACTERIZATIONS OF CERTAIN MAPS

Chi Song Wong

Let T be a self map on a metric space (X, d) such that

 $d(T(x), T(y)) \leq (d(x, T(x)) + d(y, T(y))/2, \quad x, y \in X.$

It is proved that: (a) T has a fixed point if T is continuous and X is weakly compact convex subset of a Banach space. (b) All such T which have fixed points can be explicitly determined in terms of d. Related results are obtained.

1. Introduction. In [7], [8], [9], [10], [11], R. Kannan considered the following family of self maps T on a (nonempty) complete metric space (X, d):

(1)
$$d(T(x), T(y)) \leq \frac{1}{2}(d(x, T(x)) + d(y, T(y))), \quad x, y \in X.$$

He obtained a number of results of the following type: T has a (unique) fixed point if X is a weakly compact convex subset of a reflexive Banach space B and for each closed convex subset H of X with $T(H) \subset H$ and $\delta(H) > 0$,

(2)
$$\sup \{d(y, T(y)): y \in H\} < \delta(H)$$
,

where d is the metric induced by the norm || || on B and $\delta(H)$ is the diameter of H. Suppose now that X is a weakly compact convex subset of a Banach space B and T is a self map on X which satisfies (1). P. Soardi [17, Theorems I, II] proved that T has a fixed point if either X has normal structure [3] or T has diminishing orbital diameters [2]. In this paper, the following results are obtained: (a) T has a fixed point if it is continuous (with respect to the strong topology). In fact, T has a fixed point if it is continuous along line segments. It may be worthwhile to mention here that it is a wellknown open problem that the same conclusion holds for nonexpansive self maps on X [1, p. 217]. (b) T has a fixed point if for any closed convex subset H of X with more than one point and $T(H) \subset H$,

$$\inf \left\{ d(T(y), y) \colon y \in H \right\} < \delta(H)$$
.

It is obvious that this result generalizes the above results of Soardi and the above result of Kannan. (c) Let T be a self map on X such that there exist a_1 , a_2 , a_3 , a_4 , a_5 in [0, 1] for which $a_1 + a_2 + a_3 + a_4 + a_5 = 1$ and for all x, y in X,