APPROXIMATION AND INTERPOLATION FOR SOME SPACES OF ANALYTIC FUNCTIONS IN THE UNIT DISC

A. Stray

Let U be a bounded open subset of the complex plane C such that U and $C \setminus \overline{U}$ are connected. (If $B \subset C$, \overline{B} denotes its closure in C.) $H^{\infty}(U)$ is the space of all bounded analytic functions defined on U. Let $S \subset U$ be the zero set of a nonzero function in $H^{\infty}(U)$.

Necessary and sufficient conditions on S are given for the existence of an open set $0 \supset \overline{U} \setminus (\overline{S} \setminus S)$ such that $H^{\infty}(0)$ and $H^{\infty}(U)$ have the same restrictions to S. If U is the unit disc $D = \{z : |z| < 1\}$ and S is as above, the following result holds for all the Hardy spaces $H^{p}(D)$, $0 : Given <math>g \in H^{p}(D)$, there is a function f analytic in $\mathbb{C} \setminus (\overline{S} \setminus S)$ such that $f|_{D} \in H^{p}(D)$ and f = g on S.

If S and U are as above, $H^{\infty}(U)|_{S}$ denotes the set of restrictions $f|_{S}$ of all $f \in H^{\infty}(U)$. If $S = \{z_{n}\} \subset D$ satisfies $\Sigma_{n}(1 - |z_{n}|) < \infty$, Detraz [3] proved the following result

(*): There exists an open set $0 \supset \overline{D} \setminus (\overline{S} \setminus S)$ such that $H^{\infty}(0)|_{S} = H^{\infty}(D)|_{S}$.

In this paper we give two extensions of this result. First we show that (*) holds for domains of a somewhat more general type than the unit disc D. Consider the following statement which is very similar to (*):

(**) There exists an open set V such that
$$\overline{V} \setminus (\overline{S} \setminus S) \subset D$$
 and $H^{\infty}(V)|_{S} = H^{\infty}(D)|_{S}$.

It turns out that conditions (*) and (**) are equivalent, even with D replaced by a somewhat more general set.

We shall make some use of the theory of the classical H^p spaces. We refer to [4] or [9] in this connection. Before stating our first result, we mention some more notation. If f is a complex valued function defined for each $z \in B$ we put $||f||_B = \sup \{|f(z)|, z \in B\}$. If $U \subset C$ is open, $H^{\infty}(U)$ is a Banach algebra with sup norm on U and we denote by M the maximal ideal space of $H^{\infty}(U)$. The maximal ideals $m \in M$ are identified with the multiplicative functionals on $H^{\infty}(U)$ they correspond to. If $S \subset U$ is relatively closed and I denotes the set of all $f \in H^{\infty}(U)$ which are zero on